These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 24088625

  • 1. Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria.
    Kranzler C, Lis H, Finkel OM, Schmetterer G, Shaked Y, Keren N.
    ISME J; 2014 Feb; 8(2):409-17. PubMed ID: 24088625
    [Abstract] [Full Text] [Related]

  • 2. Outer Membrane Iron Uptake Pathways in the Model Cyanobacterium Synechocystis sp. Strain PCC 6803.
    Qiu GW, Lou WJ, Sun CY, Yang N, Li ZK, Li DL, Zang SS, Fu FX, Hutchins DA, Jiang HB, Qiu BS.
    Appl Environ Microbiol; 2018 Oct 01; 84(19):. PubMed ID: 30076192
    [Abstract] [Full Text] [Related]

  • 3. The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium.
    Kranzler C, Lis H, Shaked Y, Keren N.
    Environ Microbiol; 2011 Nov 01; 13(11):2990-9. PubMed ID: 21906223
    [Abstract] [Full Text] [Related]

  • 4. New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake.
    Jiang HB, Lou WJ, Ke WT, Song WY, Price NM, Qiu BS.
    ISME J; 2015 Feb 01; 9(2):297-309. PubMed ID: 25012898
    [Abstract] [Full Text] [Related]

  • 5. TonB-Dependent Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.
    Babykin MM, Obando TSA, Zinchenko VV.
    Curr Microbiol; 2018 Feb 01; 75(2):117-123. PubMed ID: 28900692
    [Abstract] [Full Text] [Related]

  • 6. A unique porin meditates iron-selective transport through cyanobacterial outer membranes.
    Qiu GW, Jiang HB, Lis H, Li ZK, Deng B, Shang JL, Sun CY, Keren N, Qiu BS.
    Environ Microbiol; 2021 Jan 01; 23(1):376-390. PubMed ID: 33196124
    [Abstract] [Full Text] [Related]

  • 7. Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability.
    Kranzler C, Kessler N, Keren N, Shaked Y.
    Environ Microbiol; 2016 Dec 01; 18(12):5101-5111. PubMed ID: 27516103
    [Abstract] [Full Text] [Related]

  • 8. A Cluster of Five Genes Essential for the Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.
    Obando S TA, Babykin MM, Zinchenko VV.
    Curr Microbiol; 2018 Sep 01; 75(9):1165-1173. PubMed ID: 29785634
    [Abstract] [Full Text] [Related]

  • 9. Diversity and Evolution of Iron Uptake Pathways in Marine Cyanobacteria from the Perspective of the Coastal Strain Synechococcus sp. Strain PCC 7002.
    Yong CW, Deng B, Liu LM, Wang XW, Jiang HB.
    Appl Environ Microbiol; 2023 Jan 31; 89(1):e0173222. PubMed ID: 36533965
    [Abstract] [Full Text] [Related]

  • 10. Two parallel pathways for ferric and ferrous iron acquisition support growth and virulence of the intracellular pathogen Francisella tularensis Schu S4.
    Pérez N, Johnson R, Sen B, Ramakrishnan G.
    Microbiologyopen; 2016 Jun 31; 5(3):453-68. PubMed ID: 26918301
    [Abstract] [Full Text] [Related]

  • 11. Rapid evolution of a bacterial iron acquisition system.
    Chatterjee A, O'Brian MR.
    Mol Microbiol; 2018 Apr 31; 108(1):90-100. PubMed ID: 29381237
    [Abstract] [Full Text] [Related]

  • 12. Characterization of ferric and ferrous iron transport systems in Vibrio cholerae.
    Wyckoff EE, Mey AR, Leimbach A, Fisher CF, Payne SM.
    J Bacteriol; 2006 Sep 31; 188(18):6515-23. PubMed ID: 16952942
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter.
    Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL, Andrews SC, Kelly DJ.
    Mol Microbiol; 2000 Jul 31; 37(2):274-86. PubMed ID: 10931324
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803.
    Schriek S, Rückert C, Staiger D, Pistorius EK, Michel KP.
    BMC Genomics; 2007 Nov 28; 8():437. PubMed ID: 18045455
    [Abstract] [Full Text] [Related]

  • 17. Sll1263, a unique cation diffusion facilitator protein that promotes iron uptake in the cyanobacterium Synechocystis sp. Strain PCC 6803.
    Jiang HB, Lou WJ, Du HY, Price NM, Qiu BS.
    Plant Cell Physiol; 2012 Aug 28; 53(8):1404-17. PubMed ID: 22685083
    [Abstract] [Full Text] [Related]

  • 18. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120.
    Rudolf M, Kranzler C, Lis H, Margulis K, Stevanovic M, Keren N, Schleiff E.
    Mol Microbiol; 2015 Aug 28; 97(3):577-88. PubMed ID: 25943160
    [Abstract] [Full Text] [Related]

  • 19. Iron uptake by fungi: contrasted mechanisms with internal or external reduction.
    De Luca NG, Wood PM.
    Adv Microb Physiol; 2000 Aug 28; 43():39-74. PubMed ID: 10907554
    [Abstract] [Full Text] [Related]

  • 20. The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120.
    Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E.
    Environ Microbiol; 2012 Jul 28; 14(7):1655-70. PubMed ID: 22059483
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.