These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 24092691

  • 1. The differential effect of metabolic alkalosis on maximum force and rate of force development during repeated, high-intensity cycling.
    Siegler JC, Marshall PW, Raftry S, Brooks C, Dowswell B, Romero R, Green S.
    J Appl Physiol (1985); 2013 Dec; 115(11):1634-40. PubMed ID: 24092691
    [Abstract] [Full Text] [Related]

  • 2. The influence of sodium bicarbonate on maximal force and rates of force development in the triceps surae and brachii during fatiguing exercise.
    Siegler JC, Mudie K, Marshall P.
    Exp Physiol; 2016 Nov 01; 101(11):1383-1391. PubMed ID: 27634487
    [Abstract] [Full Text] [Related]

  • 3. The effect of induced alkalosis and submaximal cycling on neuromuscular response during sustained isometric contraction.
    Hunter AM, De Vito G, Bolger C, Mullany H, Galloway SD.
    J Sports Sci; 2009 Oct 01; 27(12):1261-9. PubMed ID: 19787544
    [Abstract] [Full Text] [Related]

  • 4. The effect of metabolic alkalosis on central and peripheral mechanisms associated with exercise-induced muscle fatigue in humans.
    Siegler JC, Marshall P.
    Exp Physiol; 2015 Apr 20; 100(5):519-30. PubMed ID: 25727892
    [Abstract] [Full Text] [Related]

  • 5. Ingestion of Sodium Bicarbonate (NaHCO3) Following a Fatiguing Bout of Exercise Accelerates Postexercise Acid-Base Balance Recovery and Improves Subsequent High-Intensity Cycling Time to Exhaustion.
    Gough LA, Rimmer S, Osler CJ, Higgins MF.
    Int J Sport Nutr Exerc Metab; 2017 Oct 20; 27(5):429-438. PubMed ID: 28530505
    [Abstract] [Full Text] [Related]

  • 6. The effects of sodium bicarbonate and pyridoxine-alpha-ketoglutarate on short-term maximal exercise capacity.
    Linderman J, Kirk L, Musselman J, Dolinar B, Fahey TD.
    J Sports Sci; 1992 Jun 20; 10(3):243-53. PubMed ID: 1318390
    [Abstract] [Full Text] [Related]

  • 7. Effects of pre-exercise alkalosis on the decrease in VO2 at the end of all-out exercise.
    Thomas C, Delfour-Peyrethon R, Bishop DJ, Perrey S, Leprêtre PM, Dorel S, Hanon C.
    Eur J Appl Physiol; 2016 Jan 20; 116(1):85-95. PubMed ID: 26297325
    [Abstract] [Full Text] [Related]

  • 8. Repeated bouts of sprint running after induced alkalosis.
    Gaitanos GC, Nevill ME, Brooks S, Williams C.
    J Sports Sci; 1991 Jan 20; 9(4):355-70. PubMed ID: 1664869
    [Abstract] [Full Text] [Related]

  • 9. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise.
    Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ.
    Am J Physiol Endocrinol Metab; 2000 Feb 20; 278(2):E316-29. PubMed ID: 10662717
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Differential effect of metabolic alkalosis and hypoxia on high-intensity cycling performance.
    Flinn S, Herbert K, Graham K, Siegler JC.
    J Strength Cond Res; 2014 Oct 20; 28(10):2852-8. PubMed ID: 24983849
    [Abstract] [Full Text] [Related]

  • 12. NaHCO3-induced alkalosis reduces the phosphocreatine slow component during heavy-intensity forearm exercise.
    Forbes SC, Raymer GH, Kowalchuk JM, Marsh GD.
    J Appl Physiol (1985); 2005 Nov 20; 99(5):1668-75. PubMed ID: 16002768
    [Abstract] [Full Text] [Related]

  • 13. Metabolic alkalosis, recovery and sprint performance.
    Siegler JC, McNaughton LR, Midgley AW, Keatley S, Hillman A.
    Int J Sports Med; 2010 Nov 20; 31(11):797-802. PubMed ID: 20703975
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise.
    Sostaric SM, Skinner SL, Brown MJ, Sangkabutra T, Medved I, Medley T, Selig SE, Fairweather I, Rutar D, McKenna MJ.
    J Physiol; 2006 Jan 01; 570(Pt 1):185-205. PubMed ID: 16239279
    [Abstract] [Full Text] [Related]

  • 16. Changes in soleus motoneuron pool reflex excitability and surface EMG parameters during fatiguing low- vs. high-intensity isometric contractions.
    Pääsuke M, Rannama L, Ereline J, Gapeyeva H, Oöpik V.
    Electromyogr Clin Neurophysiol; 2007 Jan 01; 47(7-8):341-50. PubMed ID: 18051628
    [Abstract] [Full Text] [Related]

  • 17. Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue.
    Raymer GH, Marsh GD, Kowalchuk JM, Thompson RT.
    J Appl Physiol (1985); 2004 Jun 01; 96(6):2050-6. PubMed ID: 14766777
    [Abstract] [Full Text] [Related]

  • 18. The physiological and ventilatory responses to repeated 60 s sprints following sodium citrate ingestion.
    Cox G, Jenkins DG.
    J Sports Sci; 1994 Oct 01; 12(5):469-75. PubMed ID: 7799476
    [Abstract] [Full Text] [Related]

  • 19. Muscle strength testing: evaluation of tests of explosive force production.
    Mirkov DM, Nedeljkovic A, Milanovic S, Jaric S.
    Eur J Appl Physiol; 2004 Mar 01; 91(2-3):147-54. PubMed ID: 14523563
    [Abstract] [Full Text] [Related]

  • 20. The effect of pH on fatigue during submaximal isometric contractions of the human calf muscle.
    Siegler JC, Marshall P, Pouslen MK, Nielsen NP, Kennedy D, Green S.
    Eur J Appl Physiol; 2015 Mar 01; 115(3):565-77. PubMed ID: 25351788
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.