These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1080 related items for PubMed ID: 24093224
1. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. Chen LM, Zhou XA, Li WB, Chang W, Zhou R, Wang C, Sha AH, Shan ZH, Zhang CJ, Qiu DZ, Yang ZL, Chen SL. BMC Genomics; 2013 Oct 06; 14():687. PubMed ID: 24093224 [Abstract] [Full Text] [Related]
2. Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. Hao QN, Zhou XA, Sha AH, Wang C, Zhou R, Chen SL. BMC Genomics; 2011 Oct 26; 12():525. PubMed ID: 22029603 [Abstract] [Full Text] [Related]
3. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. Song L, Prince S, Valliyodan B, Joshi T, Maldonado dos Santos JV, Wang J, Lin L, Wan J, Wang Y, Xu D, Nguyen HT. BMC Genomics; 2016 Jan 15; 17():57. PubMed ID: 26769043 [Abstract] [Full Text] [Related]
4. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes. Pucholt P, Sjödin P, Weih M, Rönnberg-Wästljung AC, Berlin S. BMC Plant Biol; 2015 Oct 12; 15():244. PubMed ID: 26458893 [Abstract] [Full Text] [Related]
5. Identification of soybean drought-tolerant genotypes and loci correlated with agronomic traits contributes new candidate genes for breeding. Chen L, Fang Y, Li X, Zeng K, Chen H, Zhang H, Yang H, Cao D, Hao Q, Yuan S, Zhang C, Guo W, Chen S, Yang Z, Shan Z, Zhang X, Qiu D, Zhan Y, Zhou XA. Plant Mol Biol; 2020 Jan 12; 102(1-2):109-122. PubMed ID: 31820285 [Abstract] [Full Text] [Related]
6. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK. BMC Genomics; 2013 Sep 23; 14():647. PubMed ID: 24059455 [Abstract] [Full Text] [Related]
7. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu C, Zhang X, Zhang K, An H, Hu K, Wen J, Shen J, Ma C, Yi B, Tu J, Fu T. Int J Mol Sci; 2015 Aug 11; 16(8):18752-77. PubMed ID: 26270661 [Abstract] [Full Text] [Related]
8. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. Tripathi P, Rabara RC, Reese RN, Miller MA, Rohila JS, Subramanian S, Shen QJ, Morandi D, Bücking H, Shulaev V, Rushton PJ. BMC Genomics; 2016 Feb 09; 17():102. PubMed ID: 26861168 [Abstract] [Full Text] [Related]
9. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y. PLoS One; 2014 Feb 09; 9(2):e87156. PubMed ID: 24498296 [Abstract] [Full Text] [Related]
10. Analysis of Whole Transcriptome RNA-seq Data Reveals Many Alternative Splicing Events in Soybean Roots under Drought Stress Conditions. Song L, Pan Z, Chen L, Dai Y, Wan J, Ye H, Nguyen HT, Zhang G, Chen H. Genes (Basel); 2020 Dec 19; 11(12):. PubMed ID: 33352659 [Abstract] [Full Text] [Related]
13. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham le H, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. PLoS One; 2012 Oct 21; 7(11):e49522. PubMed ID: 23189148 [Abstract] [Full Text] [Related]
14. Transcriptional analysis of drought-induced genes in the roots of a tolerant genotype of the common bean (Phaseolus vulgaris L.). Recchia GH, Caldas DG, Beraldo AL, da Silva MJ, Tsai SM. Int J Mol Sci; 2013 Mar 28; 14(4):7155-79. PubMed ID: 23538843 [Abstract] [Full Text] [Related]
15. Early responses to dehydration in contrasting wild Arachis species. Vinson CC, Mota APZ, Oliveira TN, Guimaraes LA, Leal-Bertioli SCM, Williams TCR, Nepomuceno AL, Saraiva MAP, Araujo ACG, Guimaraes PM, Brasileiro ACM. PLoS One; 2018 Mar 28; 13(5):e0198191. PubMed ID: 29847587 [Abstract] [Full Text] [Related]
17. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress. Hu L, Lv X, Zhang Y, Du W, Fan S, Kong L. Int J Mol Sci; 2024 Sep 27; 25(19):. PubMed ID: 39408761 [Abstract] [Full Text] [Related]
18. Expression Analyses of Soybean VOZ Transcription Factors and the Role of GmVOZ1G in Drought and Salt Stress Tolerance. Li B, Zheng JC, Wang TT, Min DH, Wei WL, Chen J, Zhou YB, Chen M, Xu ZS, Ma YZ. Int J Mol Sci; 2020 Mar 21; 21(6):. PubMed ID: 32245276 [Abstract] [Full Text] [Related]
19. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits. Morgil H, Tardu M, Cevahir G, Kavakli İH. Funct Integr Genomics; 2019 Sep 21; 19(5):715-727. PubMed ID: 31001704 [Abstract] [Full Text] [Related]