These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1293 related items for PubMed ID: 24094153

  • 1. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M, Fathi MH, Edris H.
    Mater Sci Eng C Mater Biol Appl; 2013 Dec 01; 33(8):4512-9. PubMed ID: 24094153
    [Abstract] [Full Text] [Related]

  • 2. Development of novel aligned nanofibrous composite membranes for guided bone regeneration.
    Kharaziha M, Fathi MH, Edris H.
    J Mech Behav Biomed Mater; 2013 Aug 01; 24():9-20. PubMed ID: 23706988
    [Abstract] [Full Text] [Related]

  • 3. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M, Bahrami SH.
    Mater Sci Eng C Mater Biol Appl; 2015 Mar 01; 48():71-9. PubMed ID: 25579898
    [Abstract] [Full Text] [Related]

  • 4. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction.
    Sharma S, Gupta D, Mohanty S, Jassal M, Agrawal AK, Tandon R.
    Invest Ophthalmol Vis Sci; 2014 Feb 12; 55(2):899-907. PubMed ID: 24425860
    [Abstract] [Full Text] [Related]

  • 5. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV.
    Biomed Mater; 2012 Dec 12; 7(6):065001. PubMed ID: 23047255
    [Abstract] [Full Text] [Related]

  • 6. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI, Lu ZF, Li JJ, Ellis-Behnke R, Kaplan DL, Zreiqat H.
    Acta Biomater; 2012 Jan 12; 8(1):302-12. PubMed ID: 22023750
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering.
    Ghosal K, Manakhov A, Zajíčková L, Thomas S.
    AAPS PharmSciTech; 2017 Jan 01; 18(1):72-81. PubMed ID: 26883261
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.
    Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC.
    Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():402-9. PubMed ID: 24268275
    [Abstract] [Full Text] [Related]

  • 12. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering.
    Pedram Rad Z, Mokhtari J, Abbasi M.
    Int J Biol Macromol; 2019 Aug 15; 135():530-543. PubMed ID: 31152839
    [Abstract] [Full Text] [Related]

  • 13. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A, Collins G, Arinzeh TL.
    Acta Biomater; 2010 Jan 15; 6(1):90-101. PubMed ID: 19631769
    [Abstract] [Full Text] [Related]

  • 14. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.
    Yuan W, Feng Y, Wang H, Yang D, An B, Zhang W, Khan M, Guo J.
    Mater Sci Eng C Mater Biol Appl; 2013 Oct 15; 33(7):3644-51. PubMed ID: 23910260
    [Abstract] [Full Text] [Related]

  • 15. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ.
    Biomaterials; 2008 Apr 15; 29(10):1422-30. PubMed ID: 18096219
    [Abstract] [Full Text] [Related]

  • 16. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration.
    Bagchi A, Meka SR, Rao BN, Chatterjee K.
    Nanotechnology; 2014 Dec 05; 25(48):485101. PubMed ID: 25379989
    [Abstract] [Full Text] [Related]

  • 17. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H, Huang J, Yu J, Liu S, Gu P.
    Int J Biol Macromol; 2011 Jan 01; 48(1):13-9. PubMed ID: 20933540
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering.
    Jing X, Mi HY, Wang XC, Peng XF, Turng LS.
    ACS Appl Mater Interfaces; 2015 Apr 01; 7(12):6955-65. PubMed ID: 25761418
    [Abstract] [Full Text] [Related]

  • 20. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S.
    Biomaterials; 2008 Dec 01; 29(34):4532-9. PubMed ID: 18757094
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 65.