These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
348 related items for PubMed ID: 24099511
1. Trehalose is not a universal solution for solid lipid nanoparticles freeze-drying. Doktorovova S, Shegokar R, Fernandes L, Martins-Lopes P, Silva AM, Müller RH, Souto EB. Pharm Dev Technol; 2014 Dec; 19(8):922-9. PubMed ID: 24099511 [Abstract] [Full Text] [Related]
2. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Fonte P, Soares S, Sousa F, Costa A, Seabra V, Reis S, Sarmento B. Biomacromolecules; 2014 Oct 13; 15(10):3753-65. PubMed ID: 25180545 [Abstract] [Full Text] [Related]
3. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Soares S, Fonte P, Costa A, Andrade J, Seabra V, Ferreira D, Reis S, Sarmento B. Int J Pharm; 2013 Nov 18; 456(2):370-81. PubMed ID: 24036086 [Abstract] [Full Text] [Related]
4. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Anhorn MG, Mahler HC, Langer K. Int J Pharm; 2008 Nov 03; 363(1-2):162-9. PubMed ID: 18672043 [Abstract] [Full Text] [Related]
5. [Freeze-drying of oleanolic acid-loaded nanosuspensions]. Zhao XL, Chen HB, Chen YJ, Yang XL. Zhongguo Zhong Yao Za Zhi; 2007 Sep 03; 32(18):1874-6. PubMed ID: 18051893 [Abstract] [Full Text] [Related]
6. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs. Elbrink K, Van Hees S, Holm R, Kiekens F. Int J Pharm; 2023 Mar 25; 635():122717. PubMed ID: 36781084 [Abstract] [Full Text] [Related]
7. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. Bozdag S, Dillen K, Vandervoort J, Ludwig A. J Pharm Pharmacol; 2005 Jun 25; 57(6):699-707. PubMed ID: 15969924 [Abstract] [Full Text] [Related]
8. Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: characterization and ability to bind the pEGFP-plasmid. Vighi E, Ruozi B, Montanari M, Battini R, Leo E. Eur J Pharm Biopharm; 2007 Sep 25; 67(2):320-8. PubMed ID: 17368876 [Abstract] [Full Text] [Related]
9. Amino acids as cryoprotectants for liposomal delivery systems. Mohammed AR, Coombes AG, Perrie Y. Eur J Pharm Sci; 2007 Apr 25; 30(5):406-13. PubMed ID: 17317117 [Abstract] [Full Text] [Related]
10. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Ohshima H, Miyagishima A, Kurita T, Makino Y, Iwao Y, Sonobe T, Itai S. Int J Pharm; 2009 Jul 30; 377(1-2):180-4. PubMed ID: 19446623 [Abstract] [Full Text] [Related]
11. Optimization of freeze-drying condition of amikacin solid lipid nanoparticles using D-optimal experimental design. Varshosaz J, Ghaffari S, Khoshayand MR, Atyabi F, Dehkordi AJ, Kobarfard F. Pharm Dev Technol; 2012 Jul 30; 17(2):187-94. PubMed ID: 21047276 [Abstract] [Full Text] [Related]
12. Freeze-drying of squalenoylated nucleoside analogue nanoparticles. Bildstein L, Hillaireau H, Desmaële D, Lepêtre-Mouelhi S, Dubernet C, Couvreur P. Int J Pharm; 2009 Nov 03; 381(2):140-5. PubMed ID: 19782881 [Abstract] [Full Text] [Related]
13. Solid Lipid Nanoparticles Containing Dopamine and Grape Seed Extract: Freeze-Drying with Cryoprotection as a Formulation Strategy to Achieve Nasal Powders. De Giglio E, Bakowsky U, Engelhardt K, Caponio A, La Pietra M, Cometa S, Castellani S, Guerra L, Fracchiolla G, Poeta ML, Mallamaci R, Cardone RA, Bellucci S, Trapani A. Molecules; 2023 Nov 22; 28(23):. PubMed ID: 38067437 [Abstract] [Full Text] [Related]
14. Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization. Fonte P, Andrade F, Azevedo C, Pinto J, Seabra V, van de Weert M, Reis S, Sarmento B. Pharm Res; 2016 Nov 22; 33(11):2777-93. PubMed ID: 27444681 [Abstract] [Full Text] [Related]
15. Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine. Khan MDFH, Youssef M, Nesdoly S, Kamen AA. Viruses; 2024 Jun 11; 16(6):. PubMed ID: 38932234 [Abstract] [Full Text] [Related]
16. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying. Date PV, Samad A, Devarajan PV. AAPS PharmSciTech; 2010 Mar 11; 11(1):304-13. PubMed ID: 20182826 [Abstract] [Full Text] [Related]
17. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. Lee MK, Kim MY, Kim S, Lee J. J Pharm Sci; 2009 Dec 11; 98(12):4808-17. PubMed ID: 19475555 [Abstract] [Full Text] [Related]
18. Cryoprotectant optimization for enhanced stability and transfection efficiency of pDNA-loaded ionizable lipid nanoparticles. Athaydes Seabra Ferreira H, Ricardo Aluotto Scalzo Júnior S, Kelton Santos de Faria K, Henrique Costa Silva G, Túllio Rodrigues Alves M, Oliveira Lobo A, Pires Goulart Guimarães P. Int J Pharm; 2024 Nov 15; 665():124696. PubMed ID: 39265853 [Abstract] [Full Text] [Related]
19. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution. Beirowski J, Inghelbrecht S, Arien A, Gieseler H. J Pharm Sci; 2011 May 15; 100(5):1958-68. PubMed ID: 21374626 [Abstract] [Full Text] [Related]
20. A study of the freeze-drying conditions of calixarene based solid lipid nanoparticles. Shahgaldian P, Gualbert J, Aïssa K, Coleman AW. Eur J Pharm Biopharm; 2003 Mar 15; 55(2):181-4. PubMed ID: 12637094 [Abstract] [Full Text] [Related] Page: [Next] [New Search]