These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


326 related items for PubMed ID: 24101505

  • 21. Understanding CRY2 interactions for optical control of intracellular signaling.
    Duan L, Hope J, Ong Q, Lou HY, Kim N, McCarthy C, Acero V, Lin MZ, Cui B.
    Nat Commun; 2017 Sep 15; 8(1):547. PubMed ID: 28916751
    [Abstract] [Full Text] [Related]

  • 22. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light.
    Liu B, Zuo Z, Liu H, Liu X, Lin C.
    Genes Dev; 2011 May 15; 25(10):1029-34. PubMed ID: 21511871
    [Abstract] [Full Text] [Related]

  • 23. Mechanisms of Cryptochrome-Mediated Photoresponses in Plants.
    Wang Q, Lin C.
    Annu Rev Plant Biol; 2020 Apr 29; 71():103-129. PubMed ID: 32169020
    [Abstract] [Full Text] [Related]

  • 24. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1.
    Takase T, Nishiyama Y, Tanihigashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T.
    Plant J; 2011 Aug 29; 67(4):608-21. PubMed ID: 21518052
    [Abstract] [Full Text] [Related]

  • 25. Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation.
    Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J, Yang H, Huang J, Lee J, Kaufman L, Lin C.
    Plant Cell; 2009 Jan 29; 21(1):118-30. PubMed ID: 19141709
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2.
    Pathak GP, Spiltoir JI, Höglund C, Polstein LR, Heine-Koskinen S, Gersbach CA, Rossi J, Tucker CL.
    Nucleic Acids Res; 2017 Nov 16; 45(20):e167. PubMed ID: 28431041
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. A study of the blue-light-dependent phosphorylation, degradation, and photobody formation of Arabidopsis CRY2.
    Zuo ZC, Meng YY, Yu XH, Zhang ZL, Feng DS, Sun SF, Liu B, Lin CT.
    Mol Plant; 2012 May 16; 5(3):726-33. PubMed ID: 22311776
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis.
    Zhou T, Meng L, Ma Y, Liu Q, Zhang Y, Yang Z, Yang D, Bian M.
    Plant Cell Rep; 2018 Feb 16; 37(2):251-264. PubMed ID: 29098377
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Arabidopsis NF-YC7 Interacts with CRY2 and PIF4/5 to Repress Blue Light-Inhibited Hypocotyl Elongation.
    Wang W, Gao L, Zhao T, Chen J, Chen T, Lin W.
    Int J Mol Sci; 2023 Aug 04; 24(15):. PubMed ID: 37569819
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.