These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1045 related items for PubMed ID: 24104211

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K, Wada S.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Full dynamics of a red blood cell in shear flow.
    Dupire J, Socol M, Viallat A.
    Proc Natl Acad Sci U S A; 2012 Dec 18; 109(51):20808-13. PubMed ID: 23213229
    [Abstract] [Full Text] [Related]

  • 8. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.
    Levant M, Steinberg V.
    Phys Rev E; 2016 Dec 18; 94(6-1):062412. PubMed ID: 28085369
    [Abstract] [Full Text] [Related]

  • 9. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.
    Nakamura M, Bessho S, Wada S.
    Int J Numer Method Biomed Eng; 2013 Jan 18; 29(1):114-28. PubMed ID: 23293072
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow.
    Kim Y, Lai MC.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec 18; 86(6 Pt 2):066321. PubMed ID: 23368052
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Hydrodynamic interaction between two nonspherical capsules in shear flow.
    Le DV, Chiam KH.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov 18; 84(5 Pt 2):056322. PubMed ID: 22181513
    [Abstract] [Full Text] [Related]

  • 17. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion.
    Tran-Son-Tay R, Sutera SP, Rao PR.
    Biophys J; 1984 Jul 18; 46(1):65-72. PubMed ID: 6743758
    [Abstract] [Full Text] [Related]

  • 18. Dynamic modes of red blood cells in oscillatory shear flow.
    Noguchi H.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun 18; 81(6 Pt 1):061920. PubMed ID: 20866453
    [Abstract] [Full Text] [Related]

  • 19. Simulation of erythrocyte deformation in a high shear flow.
    Nakamura M, Bessho S, Wada S.
    Annu Int Conf IEEE Eng Med Biol Soc; 2009 Jun 18; 2009():2358-61. PubMed ID: 19965186
    [Abstract] [Full Text] [Related]

  • 20. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T, Pan TW, Xing ZW, Glowinski R.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr 18; 79(4 Pt 1):041916. PubMed ID: 19518265
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 53.