These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
307 related items for PubMed ID: 24105733
1. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors. Jung N, Kwon S, Lee D, Yoon DM, Park YM, Benayad A, Choi JY, Park JS. Adv Mater; 2013 Dec 17; 25(47):6854-8. PubMed ID: 24105733 [Abstract] [Full Text] [Related]
3. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Zhu G, He Z, Chen J, Zhao J, Feng X, Ma Y, Fan Q, Wang L, Huang W. Nanoscale; 2014 Jan 21; 6(2):1079-85. PubMed ID: 24296659 [Abstract] [Full Text] [Related]
8. Carbon materials for chemical capacitive energy storage. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Adv Mater; 2011 Nov 09; 23(42):4828-50. PubMed ID: 21953940 [Abstract] [Full Text] [Related]
9. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. Lei Z, Shi F, Lu L. ACS Appl Mater Interfaces; 2012 Feb 09; 4(2):1058-64. PubMed ID: 22264121 [Abstract] [Full Text] [Related]
10. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC. Phys Chem Chem Phys; 2011 Oct 21; 13(39):17615-24. PubMed ID: 21887427 [Abstract] [Full Text] [Related]
11. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors. Sarker AK, Hong JD. Langmuir; 2012 Aug 28; 28(34):12637-46. PubMed ID: 22866750 [Abstract] [Full Text] [Related]
16. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y. Nat Nanotechnol; 2014 Jul 28; 9(7):555-62. PubMed ID: 24813695 [Abstract] [Full Text] [Related]
17. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors. Zhang H, Bhat VV, Gallego NC, Contescu CI. ACS Appl Mater Interfaces; 2012 Jun 27; 4(6):3239-46. PubMed ID: 22680779 [Abstract] [Full Text] [Related]
18. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors. Zhang H, Yu X, Guo D, Qu B, Zhang M, Li Q, Wang T. ACS Appl Mater Interfaces; 2013 Aug 14; 5(15):7335-40. PubMed ID: 23751359 [Abstract] [Full Text] [Related]
19. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes. You B, Li N, Zhu H, Zhu X, Yang J. ChemSusChem; 2013 Mar 14; 6(3):474-80. PubMed ID: 23417925 [Abstract] [Full Text] [Related]
20. Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene. Zhang D, Zhang X, Chen Y, Wang C, Ma Y, Dong H, Jiang L, Meng Q, Hu W. Phys Chem Chem Phys; 2012 Aug 21; 14(31):10899-903. PubMed ID: 22772748 [Abstract] [Full Text] [Related] Page: [Next] [New Search]