These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 24106877

  • 1. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil.
    Liang Y, Bradford SA, Simunek J, Heggen M, Vereecken H, Klumpp E.
    Environ Sci Technol; 2013; 47(21):12229-37. PubMed ID: 24106877
    [Abstract] [Full Text] [Related]

  • 2. Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors.
    Liang Y, Bradford SA, Simunek J, Vereecken H, Klumpp E.
    Water Res; 2013 May 01; 47(7):2572-82. PubMed ID: 23490100
    [Abstract] [Full Text] [Related]

  • 3. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D, Ge L, He J, Zhang W, Jaisi DP, Zhou D.
    J Contam Hydrol; 2014 Aug 01; 164():35-48. PubMed ID: 24926609
    [Abstract] [Full Text] [Related]

  • 4. Experimental and Numerical Investigations of Silver Nanoparticle Transport under Variable Flow and Ionic Strength in Soil.
    Makselon J, Zhou D, Engelhardt I, Jacques D, Klumpp E.
    Environ Sci Technol; 2017 Feb 21; 51(4):2096-2104. PubMed ID: 28177254
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Transport of silver nanoparticles (AgNPs) in soil.
    Sagee O, Dror I, Berkowitz B.
    Chemosphere; 2012 Jul 21; 88(5):670-5. PubMed ID: 22516207
    [Abstract] [Full Text] [Related]

  • 7. Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport.
    Liang Y, Luo Y, Lu Z, Klumpp E, Shen C, Bradford SA.
    Environ Pollut; 2021 May 01; 276():116661. PubMed ID: 33592438
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material.
    Adrian YF, Schneidewind U, Bradford SA, Simunek J, Fernandez-Steeger TM, Azzam R.
    Environ Pollut; 2018 May 01; 236():195-207. PubMed ID: 29414340
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil.
    Zhang M, Bradford SA, Šimůnek J, Vereecken H, Klumpp E.
    Water Res; 2017 Feb 01; 109():358-366. PubMed ID: 27931008
    [Abstract] [Full Text] [Related]

  • 13. Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media.
    Liang Y, Zhou J, Dong Y, Klumpp E, Šimůnek J, Bradford SA.
    Environ Pollut; 2020 Mar 01; 258():113803. PubMed ID: 31864922
    [Abstract] [Full Text] [Related]

  • 14. Tracking the Transport of Silver Nanoparticles in Soil: a Saturated Column Experiment.
    Mahdi KNM, Peters R, van der Ploeg M, Ritsema C, Geissen V.
    Water Air Soil Pollut; 2018 Mar 01; 229(10):334. PubMed ID: 30416217
    [Abstract] [Full Text] [Related]

  • 15. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties.
    Rahmatpour S, Shirvani M, Mosaddeghi MR, Bazarganipour M.
    J Environ Manage; 2017 May 15; 193():136-145. PubMed ID: 28213297
    [Abstract] [Full Text] [Related]

  • 16. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter.
    Adrian YF, Schneidewind U, Bradford SA, Šimůnek J, Klumpp E, Azzam R.
    Environ Pollut; 2019 Dec 15; 255(Pt 1):113124. PubMed ID: 31622956
    [Abstract] [Full Text] [Related]

  • 17. Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam.
    Braun A, Klumpp E, Azzam R, Neukum C.
    Sci Total Environ; 2015 Dec 01; 535():102-12. PubMed ID: 25527873
    [Abstract] [Full Text] [Related]

  • 18. Transport of soil-aged silver nanoparticles in unsaturated sand.
    Kumahor SK, Hron P, Metreveli G, Schaumann GE, Klitzke S, Lang F, Vogel HJ.
    J Contam Hydrol; 2016 Dec 01; 195():31-39. PubMed ID: 27871667
    [Abstract] [Full Text] [Related]

  • 19. Mobility of polivinylpyrrolidone coated silver nanoparticles in tropical soils.
    Yopasá Arenas A, de Souza Pessôa G, Arruda MAZ, Fostier AH.
    Chemosphere; 2018 Mar 01; 194():543-552. PubMed ID: 29241128
    [Abstract] [Full Text] [Related]

  • 20. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil.
    Makama S, Piella J, Undas A, Dimmers WJ, Peters R, Puntes VF, van den Brink NW.
    Environ Pollut; 2016 Nov 01; 218():870-878. PubMed ID: 27524251
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.