These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


425 related items for PubMed ID: 24110077

  • 1. A novel wireless power and data transmission AC to DC converter for an implantable device.
    Liu JY, Tang KT.
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1875-8. PubMed ID: 24110077
    [Abstract] [Full Text] [Related]

  • 2. A feed-forward controlled AC-DC boost converter for biomedical implants.
    Jiang H, Lan D, Lin D, Zhang J, Liou S, Shahnasser H, Shen M, Harrison M, Roy S.
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1675-8. PubMed ID: 23366230
    [Abstract] [Full Text] [Related]

  • 3. A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices.
    Lee SY, Hong JH, Hsieh CH, Liang MC, Kung JY.
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):256-65. PubMed ID: 23853325
    [Abstract] [Full Text] [Related]

  • 4. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS, Sawan M, Savaria Y.
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [Abstract] [Full Text] [Related]

  • 5. A Dual-Output Single-Stage Regulating Rectifier With PWM and Dual-Mode PFM Control for Wireless Powering of Biomedical Implants.
    Erfani R, Marefat F, Mohseni P.
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1195-1206. PubMed ID: 33216720
    [Abstract] [Full Text] [Related]

  • 6. An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants.
    Lin YP, Tang KT.
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):435-44. PubMed ID: 26285218
    [Abstract] [Full Text] [Related]

  • 7. Toward a fully integrated neurostimulator with inductive power recovery front-end.
    Mounaïm F, Sawan M.
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):309-18. PubMed ID: 23853175
    [Abstract] [Full Text] [Related]

  • 8. An Implantable Ultrasonically Powered System for Optogenetic Stimulation with Power-Efficient Active Rectifier and Charge-Reuse Capability.
    Rashidi A, Laursen K, Hosseini S, Huynh HA, Moradi F.
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1362-1371. PubMed ID: 31647446
    [Abstract] [Full Text] [Related]

  • 9. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer.
    Li X, Meng X, Tsui CY, Ki WH.
    IEEE Trans Biomed Circuits Syst; 2015 Dec; 9(6):875-84. PubMed ID: 26742141
    [Abstract] [Full Text] [Related]

  • 10. A self-powered wireless motion sensor based on a high-surface area reverse electrowetting-on-dielectric energy harvester.
    Tasneem NT, Biswas DK, Adhikari PR, Gunti A, Patwary AB, Reid RC, Mahbub I.
    Sci Rep; 2022 Mar 08; 12(1):3782. PubMed ID: 35260661
    [Abstract] [Full Text] [Related]

  • 11. A 700mV low power low noise implantable neural recording system design.
    An G, Hutchens C, Rennaker RL.
    Annu Int Conf IEEE Eng Med Biol Soc; 2014 Mar 08; 2014():6557-60. PubMed ID: 25571498
    [Abstract] [Full Text] [Related]

  • 12. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.
    Yan Lu, Wing-Hung Ki.
    IEEE Trans Biomed Circuits Syst; 2014 Jun 08; 8(3):334-44. PubMed ID: 23846494
    [Abstract] [Full Text] [Related]

  • 13. A 0.04 mm (2) Buck-Boost DC-DC Converter for Biomedical Implants Using Adaptive Gain and Discrete Frequency Scaling Control.
    George L, Gargiulo GD, Lehmann T, Hamilton TJ.
    IEEE Trans Biomed Circuits Syst; 2016 Jun 08; 10(3):668-78. PubMed ID: 26600247
    [Abstract] [Full Text] [Related]

  • 14. An Integrated Wireless Power Management and Data Telemetry IC for High-Compliance-Voltage Electrical Stimulation Applications.
    Zhao J, Yao L, Xue RF, Li P, Je M, Xu YP.
    IEEE Trans Biomed Circuits Syst; 2016 Feb 08; 10(1):113-24. PubMed ID: 25910251
    [Abstract] [Full Text] [Related]

  • 15. An On-Chip Multi-Voltage Power Converter With Leakage Current Prevention Using 0.18 μm High-Voltage CMOS Process.
    Lo YK, Chen K, Gad P, Liu W.
    IEEE Trans Biomed Circuits Syst; 2016 Feb 08; 10(1):163-74. PubMed ID: 25616076
    [Abstract] [Full Text] [Related]

  • 16. An On-/Off-Time Sensing-Based Load-Adaptive Mode Control of Triple Mode Buck Converter for Implantable Medical Devices.
    Park W, Namgoong G, Choi E, Bien F.
    IEEE Trans Biomed Circuits Syst; 2023 Jun 08; 17(3):585-597. PubMed ID: 37022053
    [Abstract] [Full Text] [Related]

  • 17. 13.56 MHz Triple Mode Rectifier Circuit With Extended Coupling Range for Wirelessly Powered Implantable Medical Devices.
    Engur Y, Yigit HA, Kulah H.
    IEEE Trans Biomed Circuits Syst; 2021 Feb 08; 15(1):68-79. PubMed ID: 33360999
    [Abstract] [Full Text] [Related]

  • 18. Wirelessly Powered and Bi-Directional Data Communication System With Adaptive Conversion Chain for Multisite Biomedical Implants Over Single Inductive Link.
    Karimi MJ, Jin M, Zhou Y, Dehollain C, Schmid A.
    IEEE Trans Biomed Circuits Syst; 2024 Jun 08; 18(3):636-647. PubMed ID: 38285577
    [Abstract] [Full Text] [Related]

  • 19. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.
    Eom K, Jeong J, Lee TH, Lee SE, Jun SB, Kim SJ.
    Annu Int Conf IEEE Eng Med Biol Soc; 2013 Jun 08; 2013():1859-62. PubMed ID: 24110073
    [Abstract] [Full Text] [Related]

  • 20. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices.
    Sanni A, Vilches A, Toumazou C.
    IEEE Trans Biomed Circuits Syst; 2012 Aug 08; 6(4):297-308. PubMed ID: 23853174
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.