These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Lack of early pattern stimulation prevents normal development of the alpha (Y) retinal ganglion cell population in the cat. Burnat K, Van Der Gucht E, Waleszczyk WJ, Kossut M, Arckens L. J Comp Neurol; 2012 Aug 01; 520(11):2414-29. PubMed ID: 22237852 [Abstract] [Full Text] [Related]
3. BDNF expression in cat striate cortex is regulated by binocular pattern deprivation. Laskowska-Macios K, Arckens L, Kossut M, Burnat K. Acta Neurobiol Exp (Wars); 2017 Aug 01; 77(3):199-204. PubMed ID: 29182610 [Abstract] [Full Text] [Related]
5. Development of global motion perception requires early postnatal exposure to patterned light. Mitchell DE, Kennie J, Kung D. Curr Biol; 2009 Apr 28; 19(8):645-9. PubMed ID: 19285405 [Abstract] [Full Text] [Related]
6. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. Mower GD, Caplan CJ, Christen WG, Duffy FH. J Comp Neurol; 1985 May 22; 235(4):448-66. PubMed ID: 3998219 [Abstract] [Full Text] [Related]
7. Global form perception in cats early deprived of pattern vision. Burnat K, Stiers P, Arckens L, Vandenbussche E, Zernicki B. Neuroreport; 2005 May 12; 16(7):751-4. PubMed ID: 15858419 [Abstract] [Full Text] [Related]
8. Critical periods: motion sensitivity is early in all areas. Daw NW. Curr Biol; 2009 Apr 28; 19(8):R336-8. PubMed ID: 19409285 [Abstract] [Full Text] [Related]
9. Zif268 mRNA Expression Patterns Reveal a Distinct Impact of Early Pattern Vision Deprivation on the Development of Primary Visual Cortical Areas in the Cat. Laskowska-Macios K, Zapasnik M, Hu TT, Kossut M, Arckens L, Burnat K. Cereb Cortex; 2015 Oct 28; 25(10):3515-26. PubMed ID: 25205660 [Abstract] [Full Text] [Related]
12. The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens. Mitchell DE. Philos Trans R Soc Lond B Biol Sci; 1991 Jul 29; 333(1266):51-79. PubMed ID: 1682958 [Abstract] [Full Text] [Related]
13. Quantitative studies of cell size in the cat's dorsal lateral geniculate nucleus following visual deprivation. Hickey TL, Spear PD, Kratz KE. J Comp Neurol; 1977 Mar 15; 172(2):265-81. PubMed ID: 838882 [Abstract] [Full Text] [Related]
14. Preference for binocular concordant visual input in early postnatal development remains despite prior monocular deprivation. Mitchell DE, Kennie J, Duffy KR. Vision Res; 2011 Jun 21; 51(12):1351-9. PubMed ID: 21540047 [Abstract] [Full Text] [Related]
15. Binocular summation of second-order global motion signals in human vision. Hutchinson CV, Ledgeway T, Allen HA, Long MD, Arena A. Vision Res; 2013 May 24; 84():16-25. PubMed ID: 23518134 [Abstract] [Full Text] [Related]
16. Better perception of global motion after monocular than after binocular deprivation. Ellemberg D, Lewis TL, Maurer D, Brar S, Brent HP. Vision Res; 2002 Jan 24; 42(2):169-79. PubMed ID: 11809471 [Abstract] [Full Text] [Related]
18. Plasticity Beyond V1: Reinforcement of Motion Perception upon Binocular Central Retinal Lesions in Adulthood. Burnat K, Hu TT, Kossut M, Eysel UT, Arckens L. J Neurosci; 2017 Sep 13; 37(37):8989-8999. PubMed ID: 28821647 [Abstract] [Full Text] [Related]
19. Binocular influences on global motion processing in the human visual system. Hess RF, Hutchinson CV, Ledgeway T, Mansouri B. Vision Res; 2007 Jun 13; 47(12):1682-92. PubMed ID: 17442362 [Abstract] [Full Text] [Related]
20. Pattern adaptation of relay cells in the lateral geniculate nucleus of binocular and monocular vision-deprived cats. Wang W, Shou TD. Sheng Li Xue Bao; 2000 Jun 13; 52(3):230-4. PubMed ID: 11956570 [Abstract] [Full Text] [Related] Page: [Next] [New Search]