These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
268 related items for PubMed ID: 2413143
1. Antigen recognition by effector T cells in antileishmanial defense. Sypek JP, Panosian CB, Wyler DJ. J Infect Dis; 1985 Nov; 152(5):1057-63. PubMed ID: 2413143 [Abstract] [Full Text] [Related]
2. Macrophage activation for antileishmanial defense by an apparently novel mechanism. Wyler DJ, Beller DI, Sypek JP. J Immunol; 1987 Feb 15; 138(4):1246-9. PubMed ID: 3100630 [Abstract] [Full Text] [Related]
3. Cell contact-mediated macrophage activation for antileishmanial defense. I. Lymphocyte effector mechanism that is contact dependent and noncytotoxic. Panosian CB, Sypek JP, Wyler DJ. J Immunol; 1984 Dec 15; 133(6):3358-65. PubMed ID: 6208278 [Abstract] [Full Text] [Related]
4. Cell contact-mediated macrophage activation for antileishmanial defense. II. Identification of effector cell phenotype and genetic restriction. Sypek JP, Panosian CB, Wyler DJ. J Immunol; 1984 Dec 15; 133(6):3351-7. PubMed ID: 6333458 [Abstract] [Full Text] [Related]
5. Th2 lymphocyte clone can activate macrophage antileishmanial defense by a lymphokine-independent mechanism in vitro and can augment parasite attrition in vivo. Sypek JP, Matzilevich MM, Wyler DJ. Cell Immunol; 1991 Mar 15; 133(1):178-86. PubMed ID: 1825032 [Abstract] [Full Text] [Related]
6. Cell contact-mediated macrophage activation for antileishmanial defence: mapping of the genetic restriction to the I region of the MHC. Sypek JP, Wyler DJ. Clin Exp Immunol; 1985 Dec 15; 62(3):449-57. PubMed ID: 3936653 [Abstract] [Full Text] [Related]
7. T-cell hybridomas reveal two distinct mechanisms of antileishmanial defense. Sypek JP, Wyler DJ. Infect Immun; 1990 May 15; 58(5):1146-52. PubMed ID: 2323812 [Abstract] [Full Text] [Related]
8. Antileishmanial defense in macrophages triggered by tumor necrosis factor expressed on CD4+ T lymphocyte plasma membrane. Sypek JP, Wyler DJ. J Exp Med; 1991 Oct 01; 174(4):755-9. PubMed ID: 1680956 [Abstract] [Full Text] [Related]
9. Intracellular destruction of Leishmania donovani and Leishmania tropica amastigotes by activated macrophages: dissociation of these microbicidal effector activities in vitro. Hockmeyer WT, Walters D, Gore RW, Williams JS, Fortier AH, Nacy CA. J Immunol; 1984 Jun 01; 132(6):3120-5. PubMed ID: 6725948 [Abstract] [Full Text] [Related]
10. Susceptibility of lymphokine-resistant Leishmania to cell contact-mediated macrophage activation. Sypek JP, Wyler DJ. J Infect Dis; 1988 Aug 01; 158(2):392-7. PubMed ID: 3136211 [Abstract] [Full Text] [Related]
11. Soluble TNF and membrane TNF expressed on CD4+ T lymphocytes differ in their ability to activate macrophage antileishmanial defense. Birkland TP, Sypek JP, Wyler DJ. J Leukoc Biol; 1992 Mar 01; 51(3):296-9. PubMed ID: 1347312 [Abstract] [Full Text] [Related]
12. A spectrum in the susceptibility of leishmanial strains to intracellular killing by murine macrophages. Scott P, Sher A. J Immunol; 1986 Feb 15; 136(4):1461-6. PubMed ID: 3511147 [Abstract] [Full Text] [Related]
13. Visceral leishmaniasis: a disease associated with inability of lymphocytes to activate macrophages to kill leishmania. Carvalho EM, Bacellar OA, Reed S, Barral A, Rocha H. Braz J Med Biol Res; 1988 Feb 15; 21(1):85-92. PubMed ID: 3179584 [Abstract] [Full Text] [Related]
14. Cross reactivity between Trypanosoma cruzi and Leishmania antigens in the lymphocyte blastogenesis assay. Carvalho EM, Reed SG, Johnson WD. Trans R Soc Trop Med Hyg; 1987 Feb 15; 81(1):82-4. PubMed ID: 3127960 [Abstract] [Full Text] [Related]
15. Immunoregulatory pathways in murine leishmaniasis: different regulatory control during Leishmania mexicana mexicana and Leishmania major infections. Alexander J, Kaye PM. Clin Exp Immunol; 1985 Sep 15; 61(3):674-82. PubMed ID: 3907906 [Abstract] [Full Text] [Related]
16. Studies on intracellular killing of Leishmania major and lysis of host macrophages by immune lymphoid cells in vitro. Pham TV, Mauël J. Parasite Immunol; 1987 Nov 15; 9(6):721-36. PubMed ID: 2448731 [Abstract] [Full Text] [Related]
17. Presentation of the protective parasite antigen LACK by Leishmania-infected macrophages. Prina E, Lang T, Glaichenhaus N, Antoine JC. J Immunol; 1996 Jun 01; 156(11):4318-27. PubMed ID: 8666803 [Abstract] [Full Text] [Related]
18. Murine cutaneous leishmaniasis: resistance correlates with the capacity to generate interferon-gamma in response to Leishmania antigens in vitro. Sadick MD, Locksley RM, Tubbs C, Raff HV. J Immunol; 1986 Jan 01; 136(2):655-61. PubMed ID: 3079789 [Abstract] [Full Text] [Related]
19. Class II MHC/peptide interaction in Leishmania donovani infection: implications in vaccine design. Roy K, Naskar K, Ghosh M, Roy S. J Immunol; 2014 Jun 15; 192(12):5873-80. PubMed ID: 24850723 [Abstract] [Full Text] [Related]
20. Comparative assessment of a DNA and protein Leishmania donovani gamma glutamyl cysteine synthetase vaccine to cross-protect against murine cutaneous leishmaniasis caused by L. major or L. mexicana infection. Campbell SA, Alawa J, Doro B, Henriquez FL, Roberts CW, Nok A, Alawa CB, Alsaadi M, Mullen AB, Carter KC. Vaccine; 2012 Feb 08; 30(7):1357-63. PubMed ID: 22210224 [Abstract] [Full Text] [Related] Page: [Next] [New Search]