These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 24139943
1. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application. Reshak AH, Shahimin MM, Shaari S, Johan N. Prog Biophys Mol Biol; 2013 Nov; 113(2):327-32. PubMed ID: 24139943 [Abstract] [Full Text] [Related]
2. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells. Lee S, Lee E. J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043 [Abstract] [Full Text] [Related]
3. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H. Nanoscale; 2012 Mar 21; 4(6):2130-3. PubMed ID: 22337348 [Abstract] [Full Text] [Related]
4. Light trapping in thin-film silicon solar cells with submicron surface texture. Dewan R, Marinkovic M, Noriega R, Phadke S, Salleo A, Knipp D. Opt Express; 2009 Dec 07; 17(25):23058-65. PubMed ID: 20052232 [Abstract] [Full Text] [Related]
5. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Xu R, Wang X, Song L, Liu W, Ji A, Yang F, Li J. Opt Express; 2012 Feb 27; 20(5):5061-8. PubMed ID: 22418311 [Abstract] [Full Text] [Related]
6. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Schneider BW, Lal NN, Baker-Finch S, White TP. Opt Express; 2014 Oct 20; 22 Suppl 6():A1422-30. PubMed ID: 25607299 [Abstract] [Full Text] [Related]
7. High efficiency thin-film crystalline Si/Ge tandem solar cell. Sun G, Chang F, Soref RA. Opt Express; 2010 Feb 15; 18(4):3746-53. PubMed ID: 20389384 [Abstract] [Full Text] [Related]
8. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Mavrokefalos A, Han SE, Yerci S, Branham MS, Chen G. Nano Lett; 2012 Jun 13; 12(6):2792-6. PubMed ID: 22612694 [Abstract] [Full Text] [Related]
9. Nearly zero reflectance of nano-pyramids and dual-antireflection coating structure for monocrystalline silicon solar cells. Chang HS, Jung HC. J Nanosci Nanotechnol; 2011 Apr 13; 11(4):3680-3. PubMed ID: 21776753 [Abstract] [Full Text] [Related]
10. Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells. Ziegler J, Haschke J, Käsebier T, Korte L, Sprafke AN, Wehrspohn RB. Opt Express; 2014 Oct 20; 22 Suppl 6():A1469-76. PubMed ID: 25607304 [Abstract] [Full Text] [Related]
11. Graphene/silicon nanowire Schottky junction for enhanced light harvesting. Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D. ACS Appl Mater Interfaces; 2011 Mar 20; 3(3):721-5. PubMed ID: 21323376 [Abstract] [Full Text] [Related]
12. Substrate-modified scattering properties of silicon nanostructures for solar energy applications. Fofang NT, Luk TS, Okandan M, Nielson GN, Brener I. Opt Express; 2013 Feb 25; 21(4):4774-82. PubMed ID: 23482011 [Abstract] [Full Text] [Related]
13. Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics. Chang CH, Yu P, Hsu MH, Tseng PC, Chang WL, Sun WC, Hsu WC, Hsu SH, Chang YC. Nanotechnology; 2011 Mar 04; 22(9):095201. PubMed ID: 21258142 [Abstract] [Full Text] [Related]
14. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Mallick SB, Agrawal M, Peumans P. Opt Express; 2010 Mar 15; 18(6):5691-706. PubMed ID: 20389585 [Abstract] [Full Text] [Related]
15. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts. Palanchoke U, Jovanov V, Kurz H, Obermeyer P, Stiebig H, Knipp D. Opt Express; 2012 Mar 12; 20(6):6340-7. PubMed ID: 22418515 [Abstract] [Full Text] [Related]
16. 2D back-side diffraction grating for improved light trapping in thin silicon solar cells. Gjessing J, Marstein ES, Sudbø A. Opt Express; 2010 Mar 15; 18(6):5481-95. PubMed ID: 20389565 [Abstract] [Full Text] [Related]
17. Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices. de Souza ML, Corio P, Brolo AG. Phys Chem Chem Phys; 2012 Dec 05; 14(45):15722-8. PubMed ID: 23090151 [Abstract] [Full Text] [Related]
18. High-efficiency photonic crystal solar cell architecture. Chutinan A, Kherani NP, Zukotynski S. Opt Express; 2009 May 25; 17(11):8871-8. PubMed ID: 19466136 [Abstract] [Full Text] [Related]
19. Triangular metallic gratings for large absorption enhancement in thin film Si solar cells. Battal E, Yogurt TA, Aygun LE, Okyay AK. Opt Express; 2012 Apr 23; 20(9):9458-64. PubMed ID: 22535035 [Abstract] [Full Text] [Related]
20. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Wang X, Peng KQ, Pan XJ, Chen X, Yang Y, Li L, Meng XM, Zhang WJ, Lee ST. Angew Chem Int Ed Engl; 2011 Oct 10; 50(42):9861-5. PubMed ID: 21905189 [Abstract] [Full Text] [Related] Page: [Next] [New Search]