These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Development of high power and energy density microsphere silicon carbide-MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Kim M, Kim J. Phys Chem Chem Phys; 2014 Jun 21; 16(23):11323-36. PubMed ID: 24789348 [Abstract] [Full Text] [Related]
3. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. Yan J, Khoo E, Sumboja A, Lee PS. ACS Nano; 2010 Jul 27; 4(7):4247-55. PubMed ID: 20593844 [Abstract] [Full Text] [Related]
4. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors. Li L, Li R, Gai S, Ding S, He F, Zhang M, Yang P. Chemistry; 2015 May 04; 21(19):7119-26. PubMed ID: 25801647 [Abstract] [Full Text] [Related]
5. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F. Small; 2015 Mar 18; 11(11):1310-9. PubMed ID: 25384679 [Abstract] [Full Text] [Related]
6. Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics. Chen W, He Y, Li X, Zhou J, Zhang Z, Zhao C, Gong C, Li S, Pan X, Xie E. Nanoscale; 2013 Dec 07; 5(23):11733-41. PubMed ID: 24114203 [Abstract] [Full Text] [Related]
8. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. Dai CS, Chien PY, Lin JY, Chou SW, Wu WK, Li PH, Wu KY, Lin TW. ACS Appl Mater Interfaces; 2013 Nov 27; 5(22):12168-74. PubMed ID: 24191729 [Abstract] [Full Text] [Related]
11. Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors. He Y, Chen W, Zhou J, Li X, Tang P, Zhang Z, Fu J, Xie E. ACS Appl Mater Interfaces; 2014 Jan 08; 6(1):210-8. PubMed ID: 24325338 [Abstract] [Full Text] [Related]
12. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. Gao H, Xiao F, Ching CB, Duan H. ACS Appl Mater Interfaces; 2012 May 08; 4(5):2801-10. PubMed ID: 22545683 [Abstract] [Full Text] [Related]
16. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. Tang P, Han L, Zhang L. ACS Appl Mater Interfaces; 2014 Jul 09; 6(13):10506-15. PubMed ID: 24905133 [Abstract] [Full Text] [Related]
17. Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes. Mu B, Zhang W, Shao S, Wang A. Phys Chem Chem Phys; 2014 May 07; 16(17):7872-80. PubMed ID: 24643731 [Abstract] [Full Text] [Related]
18. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles. Wang J, Dong L, Xu C, Ren D, Ma X, Kang F. ACS Appl Mater Interfaces; 2018 Apr 04; 10(13):10851-10859. PubMed ID: 29528208 [Abstract] [Full Text] [Related]
19. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO2@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application. Ghosh K, Yue CY, Sk MM, Jena RK. ACS Appl Mater Interfaces; 2017 May 10; 9(18):15350-15363. PubMed ID: 28414212 [Abstract] [Full Text] [Related]