These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers. Cai J, Niu H, Li Z, Du Y, Cizek P, Xie Z, Xiong H, Lin T. ACS Appl Mater Interfaces; 2015 Jul 15; 7(27):14946-53. PubMed ID: 26087346 [Abstract] [Full Text] [Related]
23. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Qiu Y, Zhao Y, Yang X, Li W, Wei Z, Xiao J, Leung SF, Lin Q, Wu H, Zhang Y, Fan Z, Yang S. Nanoscale; 2014 Apr 07; 6(7):3626-31. PubMed ID: 24562413 [Abstract] [Full Text] [Related]
24. Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Klankowski SA, Pandey GP, Malek G, Thomas CR, Bernasek SL, Wu J, Li J. Nanoscale; 2015 May 14; 7(18):8485-94. PubMed ID: 25894255 [Abstract] [Full Text] [Related]
25. 1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities. Kim JS, Shin SS, Han HS, Oh LS, Kim DH, Kim JH, Hong KS, Kim JY. ACS Appl Mater Interfaces; 2014 Jan 08; 6(1):268-74. PubMed ID: 24397749 [Abstract] [Full Text] [Related]
26. Carbon Quantum Dot-Induced MnO2 Nanowire Formation and Construction of a Binder-Free Flexible Membrane with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. Lv H, Gao X, Xu Q, Liu H, Wang YG, Xia Y. ACS Appl Mater Interfaces; 2017 Nov 22; 9(46):40394-40403. PubMed ID: 29072448 [Abstract] [Full Text] [Related]
27. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells. Ansari SA, Parveen N, Han TH, Ansari MO, Cho MH. Phys Chem Chem Phys; 2016 Apr 07; 18(13):9053-60. PubMed ID: 26967202 [Abstract] [Full Text] [Related]
29. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co3O4 and three-dimensional reduced graphene oxide electrodes with high energy and power densities. Zhang C, Wei J, Chen L, Tang S, Deng M, Du Y. Nanoscale; 2017 Oct 19; 9(40):15423-15433. PubMed ID: 28975952 [Abstract] [Full Text] [Related]
30. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Bao L, Zang J, Li X. Nano Lett; 2011 Mar 09; 11(3):1215-20. PubMed ID: 21306113 [Abstract] [Full Text] [Related]
32. Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors. Zhang X, Zhang Z, Sun S, Sun Q, Liu X. Dalton Trans; 2018 Feb 13; 47(7):2266-2273. PubMed ID: 29363699 [Abstract] [Full Text] [Related]
34. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. Shen J, Yang C, Li X, Wang G. ACS Appl Mater Interfaces; 2013 Sep 11; 5(17):8467-76. PubMed ID: 23931572 [Abstract] [Full Text] [Related]
36. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P, Bhattacharya S. ACS Appl Mater Interfaces; 2017 Nov 08; 9(44):38507-38521. PubMed ID: 28991438 [Abstract] [Full Text] [Related]
39. Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors. Zhang Y, Chen J, Fan H, Chou KC, Hou X. Dalton Trans; 2015 Dec 14; 44(46):19974-82. PubMed ID: 26523707 [Abstract] [Full Text] [Related]
40. Hierarchical MnO2 Spheres Decorated by Carbon-Coated Cobalt Nanobeads: Low-Cost and High-Performance Electrode Materials for Supercapacitors. Zhi J, Reiser O, Huang F. ACS Appl Mater Interfaces; 2016 Apr 06; 8(13):8452-9. PubMed ID: 26987041 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]