These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


179 related items for PubMed ID: 24142626

  • 1. Upregulation of the ATR-CHEK1 pathway in oral squamous cell carcinomas.
    Parikh RA, Appleman LJ, Bauman JE, Sankunny M, Lewis DW, Vlad A, Gollin SM.
    Genes Chromosomes Cancer; 2014 Jan; 53(1):25-37. PubMed ID: 24142626
    [Abstract] [Full Text] [Related]

  • 2. Targeted inhibition of ATR or CHEK1 reverses radioresistance in oral squamous cell carcinoma cells with distal chromosome arm 11q loss.
    Sankunny M, Parikh RA, Lewis DW, Gooding WE, Saunders WS, Gollin SM.
    Genes Chromosomes Cancer; 2014 Feb; 53(2):129-43. PubMed ID: 24327542
    [Abstract] [Full Text] [Related]

  • 3. Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents.
    Cui Y, Palii SS, Innes CL, Paules RS.
    Cell Cycle; 2014 Feb; 13(22):3541-50. PubMed ID: 25483091
    [Abstract] [Full Text] [Related]

  • 4. Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G(1) arrest via the ATM/p53 pathway.
    Chang JW, Kang SU, Shin YS, Kim KI, Seo SJ, Yang SS, Lee JS, Moon E, Baek SJ, Lee K, Kim CH.
    Arch Biochem Biophys; 2014 Mar 01; 545():133-40. PubMed ID: 24486404
    [Abstract] [Full Text] [Related]

  • 5. Dissecting cellular responses to irradiation via targeted disruptions of the ATM-CHK1-PP2A circuit.
    Palii SS, Cui Y, Innes CL, Paules RS.
    Cell Cycle; 2013 Apr 01; 12(7):1105-18. PubMed ID: 23462183
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation.
    Gatei M, Sloper K, Sorensen C, Syljuäsen R, Falck J, Hobson K, Savage K, Lukas J, Zhou BB, Bartek J, Khanna KK.
    J Biol Chem; 2003 Apr 25; 278(17):14806-11. PubMed ID: 12588868
    [Abstract] [Full Text] [Related]

  • 9. ATR signaling cooperates with ATM in the mechanism of low dose hypersensitivity induced by carbon ion beam.
    Xue L, Furusawa Y, Yu D.
    DNA Repair (Amst); 2015 Oct 25; 34():1-8. PubMed ID: 26246317
    [Abstract] [Full Text] [Related]

  • 10. Three independent mechanisms for arrest in G2 after ionizing radiation.
    Landsverk KS, Patzke S, Rein ID, Stokke C, Lyng H, De Angelis PM, Stokke T.
    Cell Cycle; 2011 Mar 01; 10(5):819-29. PubMed ID: 21325885
    [Abstract] [Full Text] [Related]

  • 11. Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer.
    Abdel-Fatah TM, Middleton FK, Arora A, Agarwal D, Chen T, Moseley PM, Perry C, Doherty R, Chan S, Green AR, Rakha E, Ball G, Ellis IO, Curtin NJ, Madhusudan S.
    Mol Oncol; 2015 Mar 01; 9(3):569-85. PubMed ID: 25468710
    [Abstract] [Full Text] [Related]

  • 12. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function.
    Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, Hirayama R, Matsumoto Y, Yajima H, Yu D.
    DNA Repair (Amst); 2015 Jan 01; 25():72-83. PubMed ID: 25497328
    [Abstract] [Full Text] [Related]

  • 13. RAC1 GTPase plays an important role in γ-irradiation induced G2/M checkpoint activation.
    Yan Y, Greer PM, Cao PT, Kolb RH, Cowan KH.
    Breast Cancer Res; 2012 Apr 11; 14(2):R60. PubMed ID: 22494620
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. miR-15b/16-2 regulates factors that promote p53 phosphorylation and augments the DNA damage response following radiation in the lung.
    Rahman M, Lovat F, Romano G, Calore F, Acunzo M, Bell EH, Nana-Sinkam P.
    J Biol Chem; 2014 Sep 19; 289(38):26406-26416. PubMed ID: 25092292
    [Abstract] [Full Text] [Related]

  • 16. The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation.
    Li F, Lo TY, Miles L, Wang Q, Noristani HN, Li D, Niu J, Trombley S, Goldshteyn JI, Wang C, Wang S, Qiu J, Pogoda K, Mandal K, Brewster M, Rompolas P, He Y, Janmey PA, Thomas GM, Li S, Song Y.
    Nat Commun; 2021 Jun 22; 12(1):3845. PubMed ID: 34158506
    [Abstract] [Full Text] [Related]

  • 17. Ataxia telangiectasia and Rad3-related overexpressing cancer cells induce prolonged G₂ arrest and develop resistance to ionizing radiation.
    Kim YM, Lee YM, Park SY, Pyo H.
    DNA Cell Biol; 2011 Apr 22; 30(4):219-27. PubMed ID: 21294646
    [Abstract] [Full Text] [Related]

  • 18. ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress.
    Myers K, Gagou ME, Zuazua-Villar P, Rodriguez R, Meuth M.
    PLoS Genet; 2009 Jan 22; 5(1):e1000324. PubMed ID: 19119425
    [Abstract] [Full Text] [Related]

  • 19. Isoliquiritigenin as a cause of DNA damage and inhibitor of ataxia-telangiectasia mutated expression leading to G2/M phase arrest and apoptosis in oral squamous cell carcinoma.
    Hsia SM, Yu CC, Shih YH, Yuanchien Chen M, Wang TH, Huang YT, Shieh TM.
    Head Neck; 2016 Apr 22; 38 Suppl 1():E360-71. PubMed ID: 25580586
    [Abstract] [Full Text] [Related]

  • 20. Gene amplification and overexpression of protein phosphatase 1alpha in oral squamous cell carcinoma cell lines.
    Hsu LC, Huang X, Seasholtz S, Potter DM, Gollin SM.
    Oncogene; 2006 Sep 07; 25(40):5517-26. PubMed ID: 16619035
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.