These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


289 related items for PubMed ID: 24147898

  • 1. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology.
    Honary S, Ebrahimi P, Hadianamrei R.
    Pharm Dev Technol; 2014 Dec; 19(8):987-98. PubMed ID: 24147898
    [Abstract] [Full Text] [Related]

  • 2. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods.
    Cerchiara T, Abruzzo A, di Cagno M, Bigucci F, Bauer-Brandl A, Parolin C, Vitali B, Gallucci MC, Luppi B.
    Eur J Pharm Biopharm; 2015 May; 92():112-9. PubMed ID: 25769679
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release.
    Gan Q, Wang T.
    Colloids Surf B Biointerfaces; 2007 Sep 01; 59(1):24-34. PubMed ID: 17555948
    [Abstract] [Full Text] [Related]

  • 11. "Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route* ".
    Shah B, Khunt D, Misra M, Padh H.
    Int J Biol Macromol; 2016 Aug 01; 89():206-18. PubMed ID: 27130654
    [Abstract] [Full Text] [Related]

  • 12. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.
    Fan W, Yan W, Xu Z, Ni H.
    Colloids Surf B Biointerfaces; 2012 Feb 01; 90():21-7. PubMed ID: 22014934
    [Abstract] [Full Text] [Related]

  • 13. Preparation, optimization, and in-vitro/in-vivo/ex-vivo characterization of chitosan-heparin nanoparticles: drug-induced gelation.
    Shahbazi MA, Hamidi M, Mohammadi-Samani S.
    J Pharm Pharmacol; 2013 Aug 01; 65(8):1118-33. PubMed ID: 23837580
    [Abstract] [Full Text] [Related]

  • 14. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery.
    Gan Q, Wang T, Cochrane C, McCarron P.
    Colloids Surf B Biointerfaces; 2005 Aug 01; 44(2-3):65-73. PubMed ID: 16024239
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Chitosan-tripolyphosphate submicron particles as the carrier of entrapped rutin.
    Konecsni K, Low NH, Nickerson MT.
    Food Chem; 2012 Oct 15; 134(4):1775-9. PubMed ID: 23442620
    [Abstract] [Full Text] [Related]

  • 18. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles.
    Keawchaoon L, Yoksan R.
    Colloids Surf B Biointerfaces; 2011 May 01; 84(1):163-71. PubMed ID: 21296562
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan-tripolyphosphate nanoparticles.
    Fàbregas A, Miñarro M, García-Montoya E, Pérez-Lozano P, Carrillo C, Sarrate R, Sánchez N, Ticó JR, Suñé-Negre JM.
    Int J Pharm; 2013 Mar 25; 446(1-2):199-204. PubMed ID: 23434543
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.