These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Shao X, Jin M, Guseva A, Liu C, Balan V, Hogsett D, Dale BE, Lynd L. Bioresour Technol; 2011 Sep; 102(17):8040-5. PubMed ID: 21683579 [Abstract] [Full Text] [Related]
23. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Medve J, Karlsson J, Lee D, Tjerneld F. Biotechnol Bioeng; 1998 Sep 05; 59(5):621-34. PubMed ID: 10099380 [Abstract] [Full Text] [Related]
24. Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Hong J, Ye X, Zhang YH. Langmuir; 2007 Dec 04; 23(25):12535-40. PubMed ID: 17988165 [Abstract] [Full Text] [Related]
25. Characterization of Clostridium thermocellum (B8) secretome and purified cellulosomes for lignocellulosic biomass degradation. Osiro KO, de Camargo BR, Satomi R, Hamann PR, Silva JP, de Sousa MV, Quirino BF, Aquino EN, Felix CR, Murad AM, Noronha EF. Enzyme Microb Technol; 2017 Feb 04; 97():43-54. PubMed ID: 28010772 [Abstract] [Full Text] [Related]
26. Size-modulated synergy of cellulase clustering for enhanced cellulose hydrolysis. Tsai SL, Park M, Chen W. Biotechnol J; 2013 Feb 04; 8(2):257-61. PubMed ID: 22847905 [Abstract] [Full Text] [Related]
28. Inducing effects of cellulosic hydrolysate components of lignocellulose on cellulosome synthesis in Clostridium thermocellum. Li R, Feng Y, Liu S, Qi K, Cui Q, Liu YJ. Microb Biotechnol; 2018 Sep 04; 11(5):905-916. PubMed ID: 29943510 [Abstract] [Full Text] [Related]
32. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Kumar R, Wyman CE. Biotechnol Bioeng; 2009 Jun 01; 103(2):252-67. PubMed ID: 19195015 [Abstract] [Full Text] [Related]
33. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues. Leitão VO, Noronha EF, Camargo BR, Hamann PRV, Steindorff AS, Quirino BF, de Sousa MV, Ulhoa CJ, Felix CR. J Ind Microbiol Biotechnol; 2017 Jun 01; 44(6):825-834. PubMed ID: 28181082 [Abstract] [Full Text] [Related]
34. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Zhang YH, Lynd LR. Proc Natl Acad Sci U S A; 2005 May 17; 102(20):7321-5. PubMed ID: 15883376 [Abstract] [Full Text] [Related]
35. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol. Xu C, Qin Y, Li Y, Ji Y, Huang J, Song H, Xu J. Bioresour Technol; 2010 Dec 17; 101(24):9560-9. PubMed ID: 20702089 [Abstract] [Full Text] [Related]
38. Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.). Lü Y, Li N, Yuan X, Hua B, Wang J, Ishii M, Igarashi Y, Cui Z. Appl Biochem Biotechnol; 2013 Dec 17; 171(7):1578-88. PubMed ID: 23975281 [Abstract] [Full Text] [Related]
39. Isolation of four major subunits from Clostridium thermocellum cellulosome and their synergism in the hydrolysis of crystalline cellulose. Bhat S, Goodenough PW, Bhat MK, Owen E. Int J Biol Macromol; 1994 Dec 17; 16(6):335-42. PubMed ID: 7727349 [Abstract] [Full Text] [Related]
40. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass. Zheng Y, Pan Z, Zhang R, Jenkins BM. Biotechnol Bioeng; 2009 Apr 15; 102(6):1558-69. PubMed ID: 19061240 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]