These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 24152105
41. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain. Matano Y, Hasunuma T, Kondo A. Appl Microbiol Biotechnol; 2013 Mar; 97(5):2231-7. PubMed ID: 23184221 [Abstract] [Full Text] [Related]
42. Characterization of the subunits in an apparently homogeneous subpopulation of Clostridium thermocellum cellulosomes. Ali BR, Romaniec MP, Hazlewood GP, Freedman RB. Enzyme Microb Technol; 1995 Aug; 17(8):705-11. PubMed ID: 7646877 [Abstract] [Full Text] [Related]
43. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification]. Du R, Li S, Zhang X, Wang L. Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397 [Abstract] [Full Text] [Related]
44. Comparison of Extracellular Cellulase Activities of Clostridium thermocellum LQRI and Trichoderma reesei QM9414. Ng TK, Zeikus JG. Appl Environ Microbiol; 1981 Aug; 42(2):231-40. PubMed ID: 16345823 [Abstract] [Full Text] [Related]
45. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Lu Y, Zhang YH, Lynd LR. Proc Natl Acad Sci U S A; 2006 Oct 31; 103(44):16165-9. PubMed ID: 17060624 [Abstract] [Full Text] [Related]
47. Structure of the catalytic domain of the Clostridium thermocellum cellulase CelT. Kesavulu MM, Tsai JY, Lee HL, Liang PH, Hsiao CD. Acta Crystallogr D Biol Crystallogr; 2012 Mar 31; 68(Pt 3):310-20. PubMed ID: 22349233 [Abstract] [Full Text] [Related]
50. Enhanced depolymerization and utilization of raw lignocellulosic material by co-cultures of Ruminiclostridium thermocellum with hemicellulose-utilizing partners. Froese A, Schellenberg J, Sparling R. Can J Microbiol; 2019 Apr 31; 65(4):296-307. PubMed ID: 30608879 [Abstract] [Full Text] [Related]
51. Molecular determinants of ligand specificity in family 11 carbohydrate binding modules: an NMR, X-ray crystallography and computational chemistry approach. Viegas A, Brás NF, Cerqueira NM, Fernandes PA, Prates JA, Fontes CM, Bruix M, Romão MJ, Carvalho AL, Ramos MJ, Macedo AL, Cabrita EJ. FEBS J; 2008 May 31; 275(10):2524-35. PubMed ID: 18422658 [Abstract] [Full Text] [Related]
55. Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Riederer A, Takasuka TE, Makino S, Stevenson DM, Bukhman YV, Elsen NL, Fox BG. Appl Environ Microbiol; 2011 Feb 31; 77(4):1243-53. PubMed ID: 21169455 [Abstract] [Full Text] [Related]
60. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose. Burton E, Martin VJ. Can J Microbiol; 2012 Dec 31; 58(12):1378-88. PubMed ID: 23210995 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]