These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 241556
1. Ionic and osmotic regulation and metabolic response to salinity of juvenile Callinectes Sapidus Rathbun. Leffler CW. Comp Biochem Physiol A Comp Physiol; 1975 Nov 01; 52(3):545-9. PubMed ID: 241556 [No Abstract] [Full Text] [Related]
2. The effect of salinity and temperature on the ion levels in the hemolymph of the blue crab, Callinectes sapidus, Rathbun. Engel DW, Davis EM, Smith DE, Angelovic JW. Comp Biochem Physiol A Comp Physiol; 1974 Oct 01; 49(2A):259-66. PubMed ID: 4153717 [No Abstract] [Full Text] [Related]
3. Sustaining olfaction at low salinities: evidence for a paracellular route of ion movement from the hemolymph to the sensillar lymph in the olfactory sensilla of the blue crab Callinectes sapidus. Gleeson RA, McDowell LM, Aldrich HC, Hammar K, Smith PJ. Cell Tissue Res; 2000 Sep 01; 301(3):423-31. PubMed ID: 10994788 [Abstract] [Full Text] [Related]
4. Hemolymph ionic regulation and adjustments in gill (Na+, K+)-ATPase activity during salinity acclimation in the swimming crab Callinectes ornatus (Decapoda, Brachyura). Garçon DP, Masui DC, Mantelatto FL, Furriel RP, McNamara JC, Leone FA. Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep 01; 154(1):44-55. PubMed ID: 19422928 [Abstract] [Full Text] [Related]
5. Gill area, permeability and Na+ ,K+ -ATPase activity as a function of size and salinity in the blue crab, Callinectes sapidus. Li T, Roer R, Vana M, Pate S, Check J. J Exp Zool A Comp Exp Biol; 2006 Mar 01; 305(3):233-45. PubMed ID: 16432886 [Abstract] [Full Text] [Related]
6. The effects of rapid salinity change on in vivo arginine kinase flux in the juvenile blue crab, Callinectes sapidus. Kinsey ST, Lee BC. Comp Biochem Physiol B Biochem Mol Biol; 2003 Jul 01; 135(3):521-31. PubMed ID: 12831772 [Abstract] [Full Text] [Related]
7. Hydromineral regulation in the hydrothermal vent crab Bythograea thermydron. Martinez AS, Toullec JY, Shillito B, Charmantier-Daures M, Charmantier G. Biol Bull; 2001 Oct 01; 201(2):167-74. PubMed ID: 11687388 [Abstract] [Full Text] [Related]
8. mRNA Expression and activity of ion-transporting proteins in gills of the blue crab Callinectes sapidus: effects of waterborne copper. Martins CM, Almeida DV, Marins LF, Bianchini A. Environ Toxicol Chem; 2011 Jan 01; 30(1):206-11. PubMed ID: 20928920 [Abstract] [Full Text] [Related]
9. The effect of external salinity on drinking rate and rectal secretion in the larvae of the saline-water mosquito Aedes taeniorhynchus. Bradley TJ, Phillips JE. J Exp Biol; 1977 Feb 01; 66(1):97-110. PubMed ID: 858994 [Abstract] [Full Text] [Related]
10. Effects of eyestalk ablation on carbonic anhydrase activity in the euryhaline blue crab Callinectes sapidus: neuroendocrine control of enzyme expression. Henry RP, Borst DW. J Exp Zool A Comp Exp Biol; 2006 Jan 01; 305(1):23-31. PubMed ID: 16358277 [Abstract] [Full Text] [Related]
11. Differential induction of branchial carbonic anhydrase and NA(+)/K(+) ATPase activity in the euryhaline crab, Carcinus maenas, in response to low salinity exposure. Henry RP, Garrelts EE, McCarty MM, Towle DW. J Exp Zool; 2002 Jun 01; 292(7):595-603. PubMed ID: 12115925 [Abstract] [Full Text] [Related]
12. Sustaining olfaction at low salinities: mapping ion flux associated with the olfactory sensilla of the blue crab Callinectes sapidus. Gleeson RA, Hammar K, Smith PJ. J Exp Biol; 2000 Oct 01; 203(Pt 20):3145-52. PubMed ID: 11003825 [Abstract] [Full Text] [Related]
13. Variations in serum constituents of the blue crab, Callinectes sapidus: major cations. Colvocoresses JA, Lynch MP, Webb KL. Comp Biochem Physiol A Comp Physiol; 1974 Dec 01; 49(4):787-803. PubMed ID: 4154178 [No Abstract] [Full Text] [Related]
14. The effect of dibutyryl cAMP on sodium uptake by isolated perfused gills of Callinectes sapidus. Lohrmann DM, Kamemoto FI. Gen Comp Endocrinol; 1987 Feb 01; 65(2):300-5. PubMed ID: 3028905 [Abstract] [Full Text] [Related]
15. Effects of water salinity on acid-base balance in decapod crustaceans. Whiteley NM, Scott JL, Breeze SJ, McCann L. J Exp Biol; 2001 Mar 01; 204(Pt 5):1003-11. PubMed ID: 11171423 [Abstract] [Full Text] [Related]
16. Seasonal and thermal effects on the concentration of the haemolymph in the New Zealand freshwater crayfish Paranephrops zealandicus white. Wong TM, Freeman RF. Comp Biochem Physiol A Comp Physiol; 1976 Mar 01; 55(1):17-22. PubMed ID: 8239 [No Abstract] [Full Text] [Related]
17. Ionic and body compartment responses to increasing salinity in the perch Perca fluviatilis. Lutz PL. Comp Biochem Physiol A Comp Physiol; 1972 Jul 01; 42(3):711-7. PubMed ID: 4404267 [No Abstract] [Full Text] [Related]
18. Sodium extrusion by the sea-water-acclimated fiddler crab Uca pugilator: comparison with other marine crustacea and marine teleost fish. Evans DH, Cooper K, Bogan MB. J Exp Biol; 1976 Feb 01; 64(1):203-19. PubMed ID: 1270990 [Abstract] [Full Text] [Related]
19. Copper exposure alters the metabolism of the blue crab Callinectes sapidus submitted to osmotic shock. Menezes EJ, Cruz BP, Martins CMG, Maciel FE. Mar Pollut Bull; 2020 Jan 01; 150():110743. PubMed ID: 31910517 [Abstract] [Full Text] [Related]
20. Differential acid-base regulation in various gills of the green crab Carcinus maenas: Effects of elevated environmental pCO2. Fehsenfeld S, Weihrauch D. Comp Biochem Physiol A Mol Integr Physiol; 2013 Jan 01; 164(1):54-65. PubMed ID: 23022520 [Abstract] [Full Text] [Related] Page: [Next] [New Search]