These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


432 related items for PubMed ID: 24160525

  • 1. Determining the phase diagram of water from direct coexistence simulations: the phase diagram of the TIP4P/2005 model revisited.
    Conde MM, Gonzalez MA, Abascal JL, Vega C.
    J Chem Phys; 2013 Oct 21; 139(15):154505. PubMed ID: 24160525
    [Abstract] [Full Text] [Related]

  • 2. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL, Conde MM, Noya EG, Vega C.
    Phys Chem Chem Phys; 2009 Jan 21; 11(3):543-55. PubMed ID: 19283272
    [Abstract] [Full Text] [Related]

  • 3. The phase diagram of ice: a quasi-harmonic study based on a flexible water model.
    Ramírez R, Neuerburg N, Herrero CP.
    J Chem Phys; 2013 Aug 28; 139(8):084503. PubMed ID: 24007014
    [Abstract] [Full Text] [Related]

  • 4. Dielectric constant of ices and water: a lesson about water interactions.
    Aragones JL, MacDowell LG, Vega C.
    J Phys Chem A; 2011 Jun 16; 115(23):5745-58. PubMed ID: 20866096
    [Abstract] [Full Text] [Related]

  • 5. The phase diagram of ice Ih, II, and III: a quasi-harmonic study.
    Ramírez R, Neuerburg N, Herrero CP.
    J Chem Phys; 2012 Oct 07; 137(13):134503. PubMed ID: 23039603
    [Abstract] [Full Text] [Related]

  • 6. Melting point and phase diagram of methanol as obtained from computer simulations of the OPLS model.
    Gonzalez Salgado D, Vega C.
    J Chem Phys; 2010 Mar 07; 132(9):094505. PubMed ID: 20210403
    [Abstract] [Full Text] [Related]

  • 7. Properties of ices at 0 K: a test of water models.
    Aragones JL, Noya EG, Abascal JL, Vega C.
    J Chem Phys; 2007 Oct 21; 127(15):154518. PubMed ID: 17949184
    [Abstract] [Full Text] [Related]

  • 8. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R, Abascal JL, Vega C.
    J Chem Phys; 2006 Apr 14; 124(14):144506. PubMed ID: 16626213
    [Abstract] [Full Text] [Related]

  • 9. Determination of the phase diagram of water and investigation of the electrical transport properties of ices VI and VII.
    Liu B, Yang J, Wang Q, Han Y, Ma Y, Gao C.
    Phys Chem Chem Phys; 2013 Sep 14; 15(34):14364-9. PubMed ID: 23880979
    [Abstract] [Full Text] [Related]

  • 10. The phase diagram of water at negative pressures: virtual ices.
    Conde MM, Vega C, Tribello GA, Slater B.
    J Chem Phys; 2009 Jul 21; 131(3):034510. PubMed ID: 19624212
    [Abstract] [Full Text] [Related]

  • 11. Phase diagram of the TIP4P/Ice water model by enhanced sampling simulations.
    Bore SL, Piaggi PM, Car R, Paesani F.
    J Chem Phys; 2022 Aug 07; 157(5):054504. PubMed ID: 35933204
    [Abstract] [Full Text] [Related]

  • 12. A potential model for the study of ices and amorphous water: TIP4P/Ice.
    Abascal JL, Sanz E, García Fernández R, Vega C.
    J Chem Phys; 2005 Jun 15; 122(23):234511. PubMed ID: 16008466
    [Abstract] [Full Text] [Related]

  • 13. Combinatorial entropy and phase diagram of partially ordered ice phases.
    Macdowell LG, Sanz E, Vega C, Abascal JL.
    J Chem Phys; 2004 Nov 22; 121(20):10145-58. PubMed ID: 15549889
    [Abstract] [Full Text] [Related]

  • 14. Phase Diagrams of TIP4P/2005, SPC/E, and TIP5P Water at High Pressure.
    Yagasaki T, Matsumoto M, Tanaka H.
    J Phys Chem B; 2018 Aug 09; 122(31):7718-7725. PubMed ID: 30016105
    [Abstract] [Full Text] [Related]

  • 15. Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain.
    Choukroun M, Grasset O.
    J Chem Phys; 2007 Sep 28; 127(12):124506. PubMed ID: 17902920
    [Abstract] [Full Text] [Related]

  • 16. Triple points and coexistence properties of the dense phases of water calculated using computer simulation.
    Abascal JL, Sanz E, Vega C.
    Phys Chem Chem Phys; 2009 Jan 21; 11(3):556-62. PubMed ID: 19283273
    [Abstract] [Full Text] [Related]

  • 17. Determining the three-phase coexistence line in methane hydrates using computer simulations.
    Conde MM, Vega C.
    J Chem Phys; 2010 Aug 14; 133(6):064507. PubMed ID: 20707575
    [Abstract] [Full Text] [Related]

  • 18. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y, Tanaka H, Gao G, Zeng XC.
    J Chem Phys; 2004 Oct 22; 121(16):7926-31. PubMed ID: 15485255
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C, Abascal JL, Nezbeda I.
    J Chem Phys; 2006 Jul 21; 125(3):34503. PubMed ID: 16863358
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.