These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


113 related items for PubMed ID: 2416455

  • 1. Characterization of ATP-driven calcium uptake in renal basal-lateral and renal endoplasmic reticulum membrane vesicles.
    Parys JB, De Smedt H, Vandenberghe P, Borghgraef R.
    Cell Calcium; 1985 Oct; 6(5):413-29. PubMed ID: 2416455
    [Abstract] [Full Text] [Related]

  • 2. Isolation of a plasma-membrane fraction from gastric smooth muscle. Comparison of the calcium uptake with that in endoplasmic reticulum.
    Raeymaekers L, Wuytack F, Eggermont J, De Schutter G, Casteels R.
    Biochem J; 1983 Feb 15; 210(2):315-22. PubMed ID: 6860302
    [Abstract] [Full Text] [Related]

  • 3. Differentiation of Ca2+ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle.
    Wibo M, Morel N, Godfraind T.
    Biochim Biophys Acta; 1981 Dec 21; 649(3):651-60. PubMed ID: 6459127
    [Abstract] [Full Text] [Related]

  • 4. Calcium-induced phosphorylations and [125I]calmodulin binding in renal membrane preparations.
    De Smedt H, Parys JB, Wuytack F, Borghgraef R.
    Biochim Biophys Acta; 1984 Sep 19; 776(1):122-32. PubMed ID: 6477900
    [Abstract] [Full Text] [Related]

  • 5. Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells.
    Bayerdörffer E, Eckhardt L, Haase W, Schulz I.
    J Membr Biol; 1985 Sep 19; 84(1):45-60. PubMed ID: 3999124
    [Abstract] [Full Text] [Related]

  • 6. Pig coronary artery smooth muscle: substrate and pH dependence of the two calcium pumps.
    Grover AK, Samson SE.
    Am J Physiol; 1986 Oct 19; 251(4 Pt 1):C529-34. PubMed ID: 2429555
    [Abstract] [Full Text] [Related]

  • 7. The plasma-membrane component is the primary site of action of alloxan on ATP-driven Ca2+ transport in vascular-muscle microsomal fractions.
    Kwan CY.
    Biochem J; 1988 Aug 15; 254(1):293-6. PubMed ID: 3178751
    [Abstract] [Full Text] [Related]

  • 8. Comparison of the properties of active Ca2+ transport by the islet-cell endoplasmic reticulum and plasma membrane.
    Colca JR, Kotagal N, Lacy PE, McDaniel ML.
    Biochim Biophys Acta; 1983 Apr 06; 729(2):176-84. PubMed ID: 6219705
    [Abstract] [Full Text] [Related]

  • 9. Subcellular origin of the oxalate- or inorganic phosphate-stimulated Ca2+ transport by smooth muscle microsomes: revisitation of the old problem by a new approach using saponin.
    Kwan CY.
    Biochim Biophys Acta; 1985 Sep 25; 819(1):148-52. PubMed ID: 2931116
    [Abstract] [Full Text] [Related]

  • 10. Demonstration of two distinct calcium pumps in human platelet membrane vesicles.
    Enyedi A, Sarkadi B, Földes-Papp Z, Monostory S, Gárdos G.
    J Biol Chem; 1986 Jul 15; 261(20):9558-63. PubMed ID: 2424915
    [Abstract] [Full Text] [Related]

  • 11. Calcium transport systems in the LLC-PK1 renal epithelial established cell line.
    Parys JB, De Smedt H, Borghgraef R.
    Biochim Biophys Acta; 1986 Aug 29; 888(1):70-81. PubMed ID: 2874834
    [Abstract] [Full Text] [Related]

  • 12. Localization of ATP-dependent calcium transport activity in mouse pancreatic microsomes.
    Preissler M, Williams JA.
    J Membr Biol; 1983 Aug 29; 73(2):137-44. PubMed ID: 6864771
    [Abstract] [Full Text] [Related]

  • 13. Subcellular fractionation of pig stomach smooth muscle. A study of the distribution of the (Ca2+ + Mg2+)-ATPase activity in plasmalemma and endoplasmic reticulum.
    Raeymaekers L, Wuytack F, Casteels R.
    Biochim Biophys Acta; 1985 May 28; 815(3):441-54. PubMed ID: 3158351
    [Abstract] [Full Text] [Related]

  • 14. Calcium ion transport across plasma membranes isolated from rat kidney cortex.
    Gmaj P, Murer H, Kinne R.
    Biochem J; 1979 Mar 15; 178(3):549-57. PubMed ID: 454364
    [Abstract] [Full Text] [Related]

  • 15. ATP-dependent calcium accumulation in brain microsomes. Enhancement by phosphate and oxalate.
    Trotta EE, de Meis L.
    Biochim Biophys Acta; 1975 Jun 25; 394(2):239-47. PubMed ID: 124599
    [Abstract] [Full Text] [Related]

  • 16. ATP-dependent calcium sequestration and calcium/ATP stoichiometry in isolated microsomes from guinea pig parotid glands.
    Immelmann A, Söling HD.
    FEBS Lett; 1983 Oct 17; 162(2):406-10. PubMed ID: 6226538
    [Abstract] [Full Text] [Related]

  • 17. Energy-dependent calcium transport in endoplasmic reticulum of adipocytes.
    Bruns DE, McDonald JM, Jarett L.
    J Biol Chem; 1976 Nov 25; 251(22):7191-7. PubMed ID: 11219
    [Abstract] [Full Text] [Related]

  • 18. Ca-pumps in smooth muscle: one in plasma membrane and another in endoplasmic reticulum.
    Grover AK.
    Cell Calcium; 1985 Jun 25; 6(3):227-36. PubMed ID: 2410130
    [Abstract] [Full Text] [Related]

  • 19. Regulation of intracellular calcium in chick embryo fibroblast: calcium uptake by the microsomal fraction.
    Moore L, Pastan I.
    J Cell Physiol; 1977 May 25; 91(2):289-96. PubMed ID: 193865
    [Abstract] [Full Text] [Related]

  • 20. Target size of Ca-pumps in pig coronary artery smooth muscle.
    Grover AK, Samson SE, Berenski CJ, Jung CY.
    Life Sci; 1985 Dec 09; 37(23):2193-8. PubMed ID: 2415797
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.