These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
352 related items for PubMed ID: 24166432
1. Genetic transformation of major cereal crops. Ji Q, Xu X, Wang K. Int J Dev Biol; 2013; 57(6-8):495-508. PubMed ID: 24166432 [Abstract] [Full Text] [Related]
2. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Shrawat AK, Lörz H. Plant Biotechnol J; 2006 Nov; 4(6):575-603. PubMed ID: 17309731 [Abstract] [Full Text] [Related]
3. Back to the future of cereals. Genomic studies of the world's major grain crops, together with a technology called marker-assisted breeding, could yield a new green revolution. Goff SA, Salmeron JM. Sci Am; 2004 Aug; 291(2):42-9. PubMed ID: 15298118 [No Abstract] [Full Text] [Related]
4. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Singh RK, Prasad M. Protoplasma; 2016 May; 253(3):691-707. PubMed ID: 26660352 [Abstract] [Full Text] [Related]
5. Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos. Shrawat AK, Good AG. Methods Mol Biol; 2011 May; 710():355-72. PubMed ID: 21207280 [Abstract] [Full Text] [Related]
6. Blurring the boundaries between cereal crops and model plants. Borrill P. New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228 [Abstract] [Full Text] [Related]
7. Gramene, a tool for grass genomics. Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY, Teytelman L, Schmidt SC, Zhao W, Chang K, Cartinhour S, Stein LD, McCouch SR. Plant Physiol; 2002 Dec; 130(4):1606-13. PubMed ID: 12481044 [Abstract] [Full Text] [Related]
12. Gateway vectors for transformation of cereals. Karimi M, Inzé D, Van Lijsebettens M, Hilson P. Trends Plant Sci; 2013 Jan; 18(1):1-4. PubMed ID: 23121806 [Abstract] [Full Text] [Related]
13. Grains of knowledge: genomics of model cereals. Paterson AH, Freeling M, Sasaki T. Genome Res; 2005 Dec; 15(12):1643-50. PubMed ID: 16339361 [Abstract] [Full Text] [Related]
14. Genetic engineering of wheat--current challenges and opportunities. Bhalla PL. Trends Biotechnol; 2006 Jul; 24(7):305-11. PubMed ID: 16682090 [Abstract] [Full Text] [Related]
15. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE, Børgesen CD, Elsgaard L, Palosuo T, Rötter RP, Skjelvåg AO, Peltonen-Sainio P, Börjesson T, Trnka M, Ewert F, Siebert S, Brisson N, Eitzinger J, van Asselt ED, Oberforster M, van der Fels-Klerx HJ. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012 Jul; 29(10):1527-42. PubMed ID: 22934894 [Abstract] [Full Text] [Related]
16. The big five of the monocot genomes. Haberer G, Mayer KF, Spannagl M. Curr Opin Plant Biol; 2016 Apr; 30():33-40. PubMed ID: 26866569 [Abstract] [Full Text] [Related]
17. The rice genome. The cereal of the world's poor takes center stage. Cantrell RP, Reeves TG. Science; 2002 Apr 05; 296(5565):53. PubMed ID: 11935006 [No Abstract] [Full Text] [Related]