These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 2417600

  • 1. The use of monoclonal antibodies in the study of the interaction between adrenal medullary cell membranes and chromaffin granules.
    Bohner K, Boons J, Gheuens J, Konings F, De Potter WP.
    Biochem Biophys Res Commun; 1985 Dec 31; 133(3):1006-12. PubMed ID: 2417600
    [Abstract] [Full Text] [Related]

  • 2. Protein phosphorylation and the exocytosis-like interaction between isolated adrenal medullary plasma membranes and chromaffin granules.
    Konings F, De Potter W.
    Biochem Biophys Res Commun; 1983 Jan 14; 110(1):55-60. PubMed ID: 6687680
    [Abstract] [Full Text] [Related]

  • 3. The exocytosis-like effect of bovine adrenal medullary plasma membranes on the integrity of chromaffin granules.
    Konings F, Majchrowicz B, De Potter W.
    Arch Int Pharmacodyn Ther; 1982 Dec 14; 260(2):282-3. PubMed ID: 7165430
    [No Abstract] [Full Text] [Related]

  • 4. In vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules: specific control by Ca2+.
    Konings F, De Potter W.
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Aug 14; 317(1):97-9. PubMed ID: 7279014
    [Abstract] [Full Text] [Related]

  • 5. Calcium-dependent in vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules as a model for exocytosis.
    Konings F, De Potter W.
    FEBS Lett; 1981 Apr 06; 126(1):103-6. PubMed ID: 6786919
    [No Abstract] [Full Text] [Related]

  • 6. Evidence that the H+ electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis.
    Holz RW, Senter RA, Sharp RR.
    J Biol Chem; 1983 Jun 25; 258(12):7506-13. PubMed ID: 6863252
    [Abstract] [Full Text] [Related]

  • 7. Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immunolabeling.
    Patzak A, Winkler H.
    J Cell Biol; 1986 Feb 25; 102(2):510-5. PubMed ID: 3080437
    [Abstract] [Full Text] [Related]

  • 8. Secretory vesicle - cytosol interactions in exocytosis: isolation by Ca2+-dependent affinity chromatography of proteins that bind to the chromaffin granule membrane.
    Creutz CE.
    Biochem Biophys Res Commun; 1981 Dec 31; 103(4):1395-400. PubMed ID: 7332599
    [No Abstract] [Full Text] [Related]

  • 9. p60c-src activity detected in the chromaffin granule membrane.
    Parsons SJ, Creutz CE.
    Biochem Biophys Res Commun; 1986 Jan 29; 134(2):736-42. PubMed ID: 3511908
    [Abstract] [Full Text] [Related]

  • 10. Plasma membrane and chromaffin granule characteristics in digitonin-treated chromaffin cells.
    Holz RW, Senter RA.
    J Neurochem; 1985 Nov 29; 45(5):1548-57. PubMed ID: 3876408
    [Abstract] [Full Text] [Related]

  • 11. Affinity purified tetanus toxin binds to isolated chromaffin granules and inhibits catecholamine release in digitonin-permeabilized chromaffin cells.
    Lazarovici P, Fujita K, Contreras ML, DiOrio JP, Lelkes PI.
    FEBS Lett; 1989 Aug 14; 253(1-2):121-8. PubMed ID: 2759237
    [Abstract] [Full Text] [Related]

  • 12. The chromaffin granule - plasma membrane interaction as a model for exocytosis: quantitative release of the soluble granular content.
    Konings F, De Potter W.
    Biochem Biophys Res Commun; 1982 Jan 15; 104(1):254-8. PubMed ID: 7073671
    [No Abstract] [Full Text] [Related]

  • 13. Calcium-dependent binding of cytosolic proteins by chromaffin granules from adrenal medulla.
    Geisow MJ, Burgoyne RD.
    J Neurochem; 1982 Jun 15; 38(6):1735-41. PubMed ID: 6978929
    [Abstract] [Full Text] [Related]

  • 14. A role for sialic acid containing substrates in the exocytosis-like in vitro interaction between adrenal medullary plasma membranes and chromaffin granules.
    Konings F, De Potter W.
    Biochem Biophys Res Commun; 1982 Jun 30; 106(4):1191-5. PubMed ID: 6180748
    [No Abstract] [Full Text] [Related]

  • 15. Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis.
    Hampton RY, Holz RW.
    J Cell Biol; 1983 Apr 30; 96(4):1082-8. PubMed ID: 6833392
    [Abstract] [Full Text] [Related]

  • 16. Subcellular distribution of ascorbate in bovine adrenal medulla. Evidence for accumulation in chromaffin granules against a concentration gradient.
    Ingebretsen OC, Terland O, Flatmark T.
    Biochim Biophys Acta; 1980 Mar 03; 628(2):182-9. PubMed ID: 7357036
    [Abstract] [Full Text] [Related]

  • 17. Identification and characterization of the catecholamine transporter in bovine chromaffin granules using [3H]reserpine.
    Deupree JD, Weaver JA.
    J Biol Chem; 1984 Sep 10; 259(17):10907-12. PubMed ID: 6469989
    [Abstract] [Full Text] [Related]

  • 18. Presence of the novel pituitary protein "7B2" in bovine chromaffin granules: possible co-release of 7B2 and catecholamine as induced by nicotine.
    Iguchi H, Natori S, Nawata H, Kato K, Ibayashi H, Chan JS, Seidah NG, Chrétien M.
    J Neurochem; 1987 Dec 10; 49(6):1810-4. PubMed ID: 3681297
    [Abstract] [Full Text] [Related]

  • 19. H+-ATPase and catecholamine transport in chromaffin granules.
    Beers MF, Carty SE, Johnson RG, Scarpa A.
    Ann N Y Acad Sci; 1982 Dec 10; 402():116-33. PubMed ID: 6220634
    [No Abstract] [Full Text] [Related]

  • 20. Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells.
    Dunn LA, Holz RW.
    J Biol Chem; 1983 Apr 25; 258(8):4989-93. PubMed ID: 6833287
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.