These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Thermostability and photostability of photosystem II of the resurrection plant Haberlea rhodopensis studied by chlorophyll fluorescence. Georgieva K, Maslenkova L. Z Naturforsch C J Biosci; 2006; 61(3-4):234-40. PubMed ID: 16729582 [Abstract] [Full Text] [Related]
3. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Oquist G, Chow WS, Anderson JM. Planta; 1992 Feb; 186(3):450-60. PubMed ID: 24186743 [Abstract] [Full Text] [Related]
4. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition. Roach T, Sedoud A, Krieger-Liszkay A. Biochim Biophys Acta; 2013 Oct; 1827(10):1183-90. PubMed ID: 23791666 [Abstract] [Full Text] [Related]
5. Fluorescence quenching by chlorophyll cations in photosystem II. Schweitzer RH, Brudvig GW. Biochemistry; 1997 Sep 23; 36(38):11351-9. PubMed ID: 9298954 [Abstract] [Full Text] [Related]
6. Reversible photoinhibition of unhardened and cold-acclimated spinach leaves at chilling temperatures. Somersalo S, Krause GH. Planta; 1990 Jan 23; 180(2):181-7. PubMed ID: 24201942 [Abstract] [Full Text] [Related]
7. Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae). Bascuñán-Godoy L, Sanhueza C, Cuba M, Zuñiga GE, Corcuera LJ, Bravo LA. BMC Plant Biol; 2012 Jul 24; 12():114. PubMed ID: 22827966 [Abstract] [Full Text] [Related]
8. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U, Kull O. Tree Physiol; 2001 Aug 24; 21(12-13):899-914. PubMed ID: 11498337 [Abstract] [Full Text] [Related]
11. Dissecting photosynthetic electron transport and photosystems performance in Jerusalem artichoke (Helianthus tuberosus L.) under salt stress. Yan K, Mei H, Dong X, Zhou S, Cui J, Sun Y. Front Plant Sci; 2022 Aug 24; 13():905100. PubMed ID: 35968142 [Abstract] [Full Text] [Related]
13. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants. Miyake C, Shinzaki Y, Miyata M, Tomizawa K. Plant Cell Physiol; 2004 Oct 24; 45(10):1426-33. PubMed ID: 15564526 [Abstract] [Full Text] [Related]
14. Changes in Light Energy Utilization in Photosystem II and Reactive Oxygen Species Generation in Potato Leaves by the Pinworm Tuta absoluta. Sperdouli I, Andreadis S, Moustaka J, Panteris E, Tsaballa A, Moustakas M. Molecules; 2021 May 18; 26(10):. PubMed ID: 34069787 [Abstract] [Full Text] [Related]
17. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Sun Y, Geng Q, Du Y, Yang X, Zhai H. Plant Sci; 2017 Mar 18; 256():65-71. PubMed ID: 28167040 [Abstract] [Full Text] [Related]