These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series. Hill D, Herr H. IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194 [Abstract] [Full Text] [Related]
3. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Au S, Berniker M, Herr H. Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394 [Abstract] [Full Text] [Related]
6. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis. Ingraham KA, Fey NP, Simon AM, Hargrove LJ. Annu Int Conf IEEE Eng Med Biol Soc; 2014 May; 2014():2504-7. PubMed ID: 25570499 [Abstract] [Full Text] [Related]
7. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking. Grabowski AM, D'Andrea S. J Neuroeng Rehabil; 2013 Jun 07; 10():49. PubMed ID: 23758860 [Abstract] [Full Text] [Related]
8. Contributions to the understanding of gait control. Simonsen EB. Dan Med J; 2014 Apr 07; 61(4):B4823. PubMed ID: 24814597 [Abstract] [Full Text] [Related]
9. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis. Farmer S, Silver-Thorn S, Voglewede P, Beardsley SA. J Neural Eng; 2014 Oct 07; 11(5):056027. PubMed ID: 25246110 [Abstract] [Full Text] [Related]
10. Gait patterns of transtibial amputee patients walking indoors barefoot. Han TR, Chung SG, Shin HI. Am J Phys Med Rehabil; 2003 Feb 07; 82(2):96-100. PubMed ID: 12544754 [Abstract] [Full Text] [Related]
11. Control of a powered ankle-foot prosthesis based on a neuromuscular model. Eilenberg MF, Geyer H, Herr H. IEEE Trans Neural Syst Rehabil Eng; 2010 Apr 07; 18(2):164-73. PubMed ID: 20071268 [Abstract] [Full Text] [Related]
13. Feasibility study of transtibial amputee walking using a powered prosthetic foot. Grimmer M, Holgate M, Ward J, Boehler A, Seyfarth A. IEEE Int Conf Rehabil Robot; 2017 Jul 07; 2017():1118-1123. PubMed ID: 28813971 [Abstract] [Full Text] [Related]
14. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses. Huang S, Huang H. IEEE Trans Neural Syst Rehabil Eng; 2018 Apr 07; 26(4):894-903. PubMed ID: 29641394 [Abstract] [Full Text] [Related]
18. Strategies to reduce the configuration time for a powered knee and ankle prosthesis across multiple ambulation modes. Simon AM, Fey NP, Finucane SB, Lipschutz RD, Hargrove LJ. IEEE Int Conf Rehabil Robot; 2013 Jun 07; 2013():6650371. PubMed ID: 24187190 [Abstract] [Full Text] [Related]
19. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait. Seyedali M, Czerniecki JM, Morgenroth DC, Hahn ME. J Neuroeng Rehabil; 2012 May 28; 9():29. PubMed ID: 22640660 [Abstract] [Full Text] [Related]
20. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms. Struchkov V, Buckley JG. Clin Biomech (Bristol); 2016 Feb 28; 32():164-70. PubMed ID: 26689894 [Abstract] [Full Text] [Related] Page: [Next] [New Search]