These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


276 related items for PubMed ID: 24189094

  • 21. Modeling of olfactory transduction in AWCON neuron via coupled electrical-calcium dynamics.
    Nicoletti M, Luchetti N, Chiodo L, Loppini A, Folli V, Ruocco G, Filippi S.
    Biomol Concepts; 2023 Jan 01; 14(1):. PubMed ID: 37574865
    [No Abstract] [Full Text] [Related]

  • 22. Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone.
    Torayama I, Ishihara T, Katsura I.
    J Neurosci; 2007 Jan 24; 27(4):741-50. PubMed ID: 17251413
    [Abstract] [Full Text] [Related]

  • 23. Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans.
    Vowels JJ, Thomas JH.
    Genetics; 1994 Oct 24; 138(2):303-16. PubMed ID: 7828815
    [Abstract] [Full Text] [Related]

  • 24. Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans.
    Mori I, Ohshima Y.
    Bioessays; 1997 Dec 24; 19(12):1055-64. PubMed ID: 9454556
    [Abstract] [Full Text] [Related]

  • 25. A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans.
    Tsunozaki M, Chalasani SH, Bargmann CI.
    Neuron; 2008 Sep 25; 59(6):959-71. PubMed ID: 18817734
    [Abstract] [Full Text] [Related]

  • 26. A behavioral and genetic dissection of two forms of olfactory plasticity in Caenorhabditis elegans: adaptation and habituation.
    Bernhard N, van der Kooy D.
    Learn Mem; 2000 Sep 25; 7(4):199-212. PubMed ID: 10940320
    [Abstract] [Full Text] [Related]

  • 27. The Ras-MAPK pathway is important for olfaction in Caenorhabditis elegans.
    Hirotsu T, Saeki S, Yamamoto M, Iino Y.
    Nature; 2000 Mar 16; 404(6775):289-93. PubMed ID: 10749212
    [Abstract] [Full Text] [Related]

  • 28. Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans.
    Matsuki M, Kunitomo H, Iino Y.
    Proc Natl Acad Sci U S A; 2006 Jan 24; 103(4):1112-7. PubMed ID: 16418272
    [Abstract] [Full Text] [Related]

  • 29. C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials.
    Liu Q, Kidd PB, Dobosiewicz M, Bargmann CI.
    Cell; 2018 Sep 20; 175(1):57-70.e17. PubMed ID: 30220455
    [Abstract] [Full Text] [Related]

  • 30. Functional expression of a mammalian olfactory receptor in Caenorhabditis elegans.
    Milani N, Guarin E, Renfer E, Nef P, Andres-Barquin PJ.
    Neuroreport; 2002 Dec 20; 13(18):2515-20. PubMed ID: 12499859
    [Abstract] [Full Text] [Related]

  • 31. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals.
    Hino T, Hirai S, Ishihara T, Fujiwara M.
    Genes Cells; 2021 Jun 20; 26(6):411-425. PubMed ID: 33817914
    [Abstract] [Full Text] [Related]

  • 32. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans.
    O'Halloran DM, Altshuler-Keylin S, Lee JI, L'Etoile ND.
    PLoS Genet; 2009 Dec 20; 5(12):e1000761. PubMed ID: 20011101
    [Abstract] [Full Text] [Related]

  • 33. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans.
    Leinwand SG, Yang CJ, Bazopoulou D, Chronis N, Srinivasan J, Chalasani SH.
    Elife; 2015 Sep 22; 4():e10181. PubMed ID: 26394000
    [Abstract] [Full Text] [Related]

  • 34. Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans.
    Colbert HA, Bargmann CI.
    Neuron; 1995 Apr 22; 14(4):803-12. PubMed ID: 7718242
    [Abstract] [Full Text] [Related]

  • 35. Odour concentration-dependent olfactory preference change in C. elegans.
    Yoshida K, Hirotsu T, Tagawa T, Oda S, Wakabayashi T, Iino Y, Ishihara T.
    Nat Commun; 2012 Mar 13; 3():739. PubMed ID: 22415830
    [Abstract] [Full Text] [Related]

  • 36. Investigation of the binding between olfactory receptors and odorant molecules in C. elegans organism.
    Milanetti E, Gosti G, De Flaviis L, Olimpieri PP, Schwartz S, Caprini D, Ruocco G, Folli V.
    Biophys Chem; 2019 Dec 13; 255():106264. PubMed ID: 31670159
    [Abstract] [Full Text] [Related]

  • 37. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl.
    Sengupta P, Chou JH, Bargmann CI.
    Cell; 1996 Mar 22; 84(6):899-909. PubMed ID: 8601313
    [Abstract] [Full Text] [Related]

  • 38. PIM-Related Kinases Selectively Regulate Olfactory Sensations in Caenorhabditis elegans.
    Kalichamy KS, Ikkala K, Pörsti J, Santio NM, Tuomaala J, Jha S, Holmberg CI, Koskinen PJ.
    eNeuro; 2019 Mar 22; 6(4):. PubMed ID: 31387876
    [Abstract] [Full Text] [Related]

  • 39. The sense of smell: molecular basis of odorant recognition.
    Zarzo M.
    Biol Rev Camb Philos Soc; 2007 Aug 22; 82(3):455-79. PubMed ID: 17624963
    [Abstract] [Full Text] [Related]

  • 40. Functional imaging and quantification of multineuronal olfactory responses in C. elegans.
    Lin A, Qin S, Casademunt H, Wu M, Hung W, Cain G, Tan NZ, Valenzuela R, Lesanpezeshki L, Venkatachalam V, Pehlevan C, Zhen M, Samuel ADT.
    Sci Adv; 2023 Mar 22; 9(9):eade1249. PubMed ID: 36857454
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.