These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia. Petousi N, Croft QP, Cavalleri GL, Cheng HY, Formenti F, Ishida K, Lunn D, McCormack M, Shianna KV, Talbot NP, Ratcliffe PJ, Robbins PA. J Appl Physiol (1985); 2014 Apr 01; 116(7):893-904. PubMed ID: 24030663 [Abstract] [Full Text] [Related]
3. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Peng Y, Cui C, He Y, Ouzhuluobu, Zhang H, Yang D, Zhang Q, Bianbazhuoma, Yang L, He Y, Xiang K, Zhang X, Bhandari S, Shi P, Yangla, Dejiquzong, Baimakangzhuo, Duojizhuoma, Pan Y, Cirenyangji, Baimayangji, Gonggalanzi, Bai C, Bianba, Basang, Ciwangsangbu, Xu S, Chen H, Liu S, Wu T, Qi X, Su B. Mol Biol Evol; 2017 Apr 01; 34(4):818-830. PubMed ID: 28096303 [Abstract] [Full Text] [Related]
4. Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. Tashi T, Scott Reading N, Wuren T, Zhang X, Moore LG, Hu H, Tang F, Shestakova A, Lorenzo F, Burjanivova T, Koul P, Guchhait P, Wittwer CT, Julian CG, Shah B, Huff CD, Gordeuk VR, Prchal JT, Ge R. J Mol Med (Berl); 2017 Jun 01; 95(6):665-670. PubMed ID: 28233034 [Abstract] [Full Text] [Related]
5. Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans. Simonson TS, Huff CD, Witherspoon DJ, Prchal JT, Jorde LB. Exp Physiol; 2015 Nov 01; 100(11):1263-8. PubMed ID: 26454145 [Abstract] [Full Text] [Related]
6. Tibetan PHD2, an allele with loss-of-function properties. Song D, Navalsky BE, Guan W, Ingersoll C, Wang T, Loro E, Eeles L, Matchett KB, Percy MJ, Walsby-Tickle J, McCullagh JSO, Medina RJ, Khurana TS, Bigham AW, Lappin TR, Lee FS. Proc Natl Acad Sci U S A; 2020 Jun 02; 117(22):12230-12238. PubMed ID: 32414920 [Abstract] [Full Text] [Related]
7. Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Xiang K, Ouzhuluobu, Peng Y, Yang Z, Zhang X, Cui C, Zhang H, Li M, Zhang Y, Bianba, Gonggalanzi, Basang, Ciwangsangbu, Wu T, Chen H, Shi H, Qi X, Su B. Mol Biol Evol; 2013 Aug 02; 30(8):1889-98. PubMed ID: 23666208 [Abstract] [Full Text] [Related]
8. Genetic and immune changes in Tibetan high-altitude populations contribute to biological adaptation to hypoxia. Bai J, Li L, Li Y, Zhang L. Environ Health Prev Med; 2022 Aug 02; 27():39. PubMed ID: 36244759 [Abstract] [Full Text] [Related]
9. Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. Ai H, Yang B, Li J, Xie X, Chen H, Ren J. BMC Genomics; 2014 Oct 01; 15(1):834. PubMed ID: 25270331 [Abstract] [Full Text] [Related]
10. Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Gray Wolf from the Tibetan Plateau. Miao B, Wang Z, Li Y. Mol Biol Evol; 2017 Mar 01; 34(3):734-743. PubMed ID: 27927792 [Abstract] [Full Text] [Related]
11. Genetic determinants of Tibetan high-altitude adaptation. Simonson TS, McClain DA, Jorde LB, Prchal JT. Hum Genet; 2012 Apr 01; 131(4):527-33. PubMed ID: 22068265 [Abstract] [Full Text] [Related]
12. Energy power in mountains: difference in metabolism pattern results in different adaption traits in Tibetans. Bai ZZ, Jin GE, Wu-Ren T, Ga Q, Ge RL. Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Nov 01; 28(6):488-93. PubMed ID: 23581177 [Abstract] [Full Text] [Related]
13. Human high-altitude adaptation: forward genetics meets the HIF pathway. Bigham AW, Lee FS. Genes Dev; 2014 Oct 15; 28(20):2189-204. PubMed ID: 25319824 [Abstract] [Full Text] [Related]
14. Shared and unique signals of high-altitude adaptation in geographically distinct Tibetan populations. Wuren T, Simonson TS, Qin G, Xing J, Huff CD, Witherspoon DJ, Jorde LB, Ge RL. PLoS One; 2014 Oct 15; 9(3):e88252. PubMed ID: 24642866 [Abstract] [Full Text] [Related]
15. Metabolic aspects of high-altitude adaptation in Tibetans. Ge RL, Simonson TS, Gordeuk V, Prchal JT, McClain DA. Exp Physiol; 2015 Nov 15; 100(11):1247-55. PubMed ID: 26053282 [Abstract] [Full Text] [Related]
16. Neural network correlates of high-altitude adaptive genetic variants in Tibetans: A pilot, exploratory study. Guo Z, Fan C, Li T, Gesang L, Yin W, Wang N, Weng X, Gong Q, Zhang J, Wang J. Hum Brain Mapp; 2020 Jun 15; 41(9):2406-2430. PubMed ID: 32128935 [Abstract] [Full Text] [Related]
17. Population Genomics Analysis Revealed Origin and High-altitude Adaptation of Tibetan Pigs. Ma YF, Han XM, Huang CP, Zhong L, Adeola AC, Irwin DM, Xie HB, Zhang YP. Sci Rep; 2019 Aug 07; 9(1):11463. PubMed ID: 31391504 [Abstract] [Full Text] [Related]
19. 'ome on the Range: altitude adaptation, positive selection, and Himalayan genomics. MacInnis MJ, Rupert JL. High Alt Med Biol; 2011 Aug 07; 12(2):133-9. PubMed ID: 21718161 [Abstract] [Full Text] [Related]
20. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, López Herráez D, Brutsaert T, Parra EJ, Moore LG, Shriver MD. PLoS Genet; 2010 Sep 09; 6(9):e1001116. PubMed ID: 20838600 [Abstract] [Full Text] [Related] Page: [Next] [New Search]