These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
280 related items for PubMed ID: 24202911
1. Ranolazine reduces neuronal excitability by interacting with inactivated states of brain sodium channels. Kahlig KM, Hirakawa R, Liu L, George AL, Belardinelli L, Rajamani S. Mol Pharmacol; 2014 Jan; 85(1):162-74. PubMed ID: 24202911 [Abstract] [Full Text] [Related]
2. Block of Na+ currents and suppression of action potentials in embryonic rat dorsal root ganglion neurons by ranolazine. Hirakawa R, El-Bizri N, Shryock JC, Belardinelli L, Rajamani S. Neuropharmacology; 2012 Jun; 62(7):2251-60. PubMed ID: 22313527 [Abstract] [Full Text] [Related]
3. Effects of the antianginal drug, ranolazine, on the brain sodium channel Na(V)1.2 and its modulation by extracellular protons. Peters CH, Sokolov S, Rajamani S, Ruben PC. Br J Pharmacol; 2013 Jun; 169(3):704-16. PubMed ID: 23472826 [Abstract] [Full Text] [Related]
4. Carisbamate, a novel neuromodulator, inhibits voltage-gated sodium channels and action potential firing of rat hippocampal neurons. Liu Y, Yohrling GJ, Wang Y, Hutchinson TL, Brenneman DE, Flores CM, Zhao B. Epilepsy Res; 2009 Jan; 83(1):66-72. PubMed ID: 19013768 [Abstract] [Full Text] [Related]
5. State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine. Wang GK, Calderon J, Wang SY. Mol Pharmacol; 2008 Mar; 73(3):940-8. PubMed ID: 18079277 [Abstract] [Full Text] [Related]
6. Ranolazine selectively blocks persistent current evoked by epilepsy-associated Naν1.1 mutations. Kahlig KM, Lepist I, Leung K, Rajamani S, George AL. Br J Pharmacol; 2010 Nov; 161(6):1414-26. PubMed ID: 20735403 [Abstract] [Full Text] [Related]
7. Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Thomas EA, Petrou S. Epilepsia; 2013 Jul; 54(7):1195-202. PubMed ID: 23566163 [Abstract] [Full Text] [Related]
8. Antiepileptic activity of preferential inhibitors of persistent sodium current. Anderson LL, Thompson CH, Hawkins NA, Nath RD, Petersohn AA, Rajamani S, Bush WS, Frankel WN, Vanoye CG, Kearney JA, George AL. Epilepsia; 2014 Aug; 55(8):1274-83. PubMed ID: 24862204 [Abstract] [Full Text] [Related]
9. Block of tetrodotoxin-sensitive, Na(V)1.7 and tetrodotoxin-resistant, Na(V)1.8, Na+ channels by ranolazine. Rajamani S, Shryock JC, Belardinelli L. Channels (Austin); 2008 Aug; 2(6):449-60. PubMed ID: 19077543 [Abstract] [Full Text] [Related]
11. Ranolazine vs phenytoin: greater effect of ranolazine on the transient Na(+) current than on the persistent Na(+) current in central neurons. Terragni B, Scalmani P, Colombo E, Franceschetti S, Mantegazza M. Neuropharmacology; 2016 Nov; 110(Pt A):223-236. PubMed ID: 27450092 [Abstract] [Full Text] [Related]
18. Ranolazine block of human Na v 1.4 sodium channels and paramyotonia congenita mutants. El-Bizri N, Kahlig KM, Shyrock JC, George AL, Belardinelli L, Rajamani S. Channels (Austin); 2011 Nov; 5(2):161-72. PubMed ID: 21317558 [Abstract] [Full Text] [Related]
19. Effects of ranolazine on wild-type and mutant hNav1.7 channels and on DRG neuron excitability. Estacion M, Waxman SG, Dib-Hajj SD. Mol Pain; 2010 Jun 08; 6():35. PubMed ID: 20529343 [Abstract] [Full Text] [Related]
20. Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells. Wu SN, Yeh CC, Huang HC, So EC, Lo YC. Acta Physiol (Oxf); 2012 Oct 08; 206(2):120-34. PubMed ID: 22533628 [Abstract] [Full Text] [Related] Page: [Next] [New Search]