These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
223 related items for PubMed ID: 24206222
1. Molecular contribution to cleft palate production in cleft lip mice. Sasaki Y, Taya Y, Saito K, Fujita K, Aoba T, Fujiwara T. Congenit Anom (Kyoto); 2014 May; 54(2):94-9. PubMed ID: 24206222 [Abstract] [Full Text] [Related]
2. Association between palatal morphogenesis and Pax9 expression pattern in CL/Fr embryos with clefting during palatal development. Hamachi T, Sasaki Y, Hidaka K, Nakata M. Arch Oral Biol; 2003 Aug; 48(8):581-7. PubMed ID: 12828987 [Abstract] [Full Text] [Related]
3. Cleft lip and cleft palate in Esrp1 knockout mice is associated with alterations in epithelial-mesenchymal crosstalk. Lee S, Sears MJ, Zhang Z, Li H, Salhab I, Krebs P, Xing Y, Nah HD, Williams T, Carstens RP. Development; 2020 Apr 30; 147(21):. PubMed ID: 32253237 [Abstract] [Full Text] [Related]
4. Deficient cell proliferation in palatal shelf mesenchyme of CL/Fr mouse embryos. Sasaki Y, Tanaka S, Hamachi T, Taya Y. J Dent Res; 2004 Oct 30; 83(10):797-801. PubMed ID: 15381722 [Abstract] [Full Text] [Related]
5. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice. Li C, Lan Y, Krumlauf R, Jiang R. J Dent Res; 2017 Oct 30; 96(11):1273-1281. PubMed ID: 28692808 [Abstract] [Full Text] [Related]
6. Effects of fetus weight, dam strain, dam weight, and litter size on the craniofacial morphogenesis of CL/Fr mouse fetuses affected with cleft lip and palate. Nonaka K, Sasaki Y, Watanabe Y, Yanagita K, Nakata M. Cleft Palate Craniofac J; 1997 Jul 30; 34(4):325-30. PubMed ID: 9257023 [Abstract] [Full Text] [Related]
7. Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis. Lough KJ, Byrd KM, Spitzer DC, Williams SE. J Dent Res; 2017 Oct 30; 96(11):1210-1220. PubMed ID: 28817360 [Abstract] [Full Text] [Related]
8. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Tian H, Feng J, Li J, Ho TV, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W, Sanchez-Lara PA, Chai Y. Hum Mol Genet; 2017 Mar 01; 26(5):860-872. PubMed ID: 28069795 [Abstract] [Full Text] [Related]
9. The effect of dam strain on the craniofacial morphogenesis of CL/Fr mouse fetuses. Martin DA, Nonaka K, Yanagita K, Nakata M. J Craniofac Genet Dev Biol; 1995 Mar 01; 15(3):117-24. PubMed ID: 8642051 [Abstract] [Full Text] [Related]
10. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of Snail1 during frontonasal prominence fusion. Losa M, Risolino M, Li B, Hart J, Quintana L, Grishina I, Yang H, Choi IF, Lewicki P, Khan S, Aho R, Feenstra J, Vincent CT, Brown AMC, Ferretti E, Williams T, Selleri L. Development; 2018 Mar 01; 145(5):. PubMed ID: 29437830 [Abstract] [Full Text] [Related]
11. Expression analyses of human cleft palate tissue suggest a role for osteopontin and immune related factors in palatal development. Jakobsen LP, Borup R, Vestergaard J, Larsen LA, Lage K, Maroun LL, Kjaer I, Niemann CU, Andersen M, Knudsen MA, Møllgård K, Tommerup N. Exp Mol Med; 2009 Feb 28; 41(2):77-85. PubMed ID: 19287188 [Abstract] [Full Text] [Related]
12. Embryology and epidemiology of cleft lip and palate. Bernheim N, Georges M, Malevez C, De Mey A, Mansbach A. B-ENT; 2006 Feb 28; 2 Suppl 4():11-9. PubMed ID: 17366840 [Abstract] [Full Text] [Related]
13. Location and distribution of epithelial pearls and tooth buds in human fetuses with cleft lip and palate. Arnold WH, Rezwani T, Baric I. Cleft Palate Craniofac J; 1998 Jul 28; 35(4):359-65. PubMed ID: 9684775 [Abstract] [Full Text] [Related]
14. Dysregulation of Rho GTPases in orofacial cleft patients-derived primary cells leads to impaired cell migration, a potential cause of cleft/lip palate development. El-Sibai M, El Hajj J, Al Haddad M, El Baba N, Al Saneh M, Daoud Khatoun W, Helaers R, Vikkula M, El Atat O, Sabbagh J, Abou Chebel N, Ghassibe-Sabbagh M. Cells Dev; 2021 Mar 28; 165():203656. PubMed ID: 34024335 [Abstract] [Full Text] [Related]
15. Tbx22 expressions during palatal development in fetuses with glucocorticoid-/alcohol-induced C57BL/6N cleft palates. Kim SM, Lee JH, Jabaiti S, Lee SK, Choi JY. J Craniofac Surg; 2009 Sep 28; 20(5):1316-26. PubMed ID: 19816249 [Abstract] [Full Text] [Related]
16. An integrative, genomic, transcriptomic and network-assisted study to identify genes associated with human cleft lip with or without cleft palate. Yan F, Dai Y, Iwata J, Zhao Z, Jia P. BMC Med Genomics; 2020 Apr 03; 13(Suppl 5):39. PubMed ID: 32241273 [Abstract] [Full Text] [Related]
17. Altered BMP-Smad4 signaling causes complete cleft palate by disturbing osteogenesis in palatal mesenchyme. Li N, Liu J, Liu H, Wang S, Hu P, Zhou H, Xiao J, Liu C. J Mol Histol; 2021 Feb 03; 52(1):45-61. PubMed ID: 33159638 [Abstract] [Full Text] [Related]
18. Effect of the dam strain on the spontaneous incidence of cleft lip and palate and intrauterine growth of CL/Fr mouse fetuses. Nonaka K, Sasaki Y, Martin DA, Nakata M. J Assist Reprod Genet; 1995 Aug 03; 12(7):447-52. PubMed ID: 8574073 [Abstract] [Full Text] [Related]
19. Transforming growth factor-beta3 promotes mesenchymal cell proliferation and angiogenesis mediated by the enhancement of cyclin D1, Flk-1, and CD31 gene expression during CL/Fr mouse lip fusion. Muraoka N, Shum L, Fukumoto S, Nomura T, Ohishi M, Nonaka K. Birth Defects Res A Clin Mol Teratol; 2005 Dec 03; 73(12):956-65. PubMed ID: 16323168 [Abstract] [Full Text] [Related]
20. A comprehensive analysis of AHRR gene as a candidate for cleft lip with or without cleft palate. Linnenkamp BDW, Raskin S, Esposito SE, Herai RH. Mutat Res Rev Mutat Res; 2020 Dec 03; 785():108319. PubMed ID: 32800270 [Abstract] [Full Text] [Related] Page: [Next] [New Search]