These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
236 related items for PubMed ID: 24211332
21. Protein-coated polymer as a matrix for enzyme immobilization: immobilization of trypsin on bovine serum albumin-coated allyl glycidyl ether-ethylene glycol dimethacrylate copolymer. Jasti LS, Dola SR, Kumaraguru T, Bajja S, Fadnavis NW, Addepally U, Rajdeo K, Ponrathnam S, Deokar S. Biotechnol Prog; 2014; 30(2):317-23. PubMed ID: 24449609 [Abstract] [Full Text] [Related]
22. Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles. Atacan K, Özacar M. Colloids Surf B Biointerfaces; 2015 Apr 01; 128():227-236. PubMed ID: 25686792 [Abstract] [Full Text] [Related]
23. Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage. Fan C, Shi Z, Pan Y, Song Z, Zhang W, Zhao X, Tian F, Peng B, Qin W, Cai Y, Qian X. Anal Chem; 2014 Feb 04; 86(3):1452-8. PubMed ID: 24447065 [Abstract] [Full Text] [Related]
25. Fast multipoint immobilized MOF bioreactor. Liu WL, Wu CY, Chen CY, Singco B, Lin CH, Huang HY. Chemistry; 2014 Jul 14; 20(29):8923-8. PubMed ID: 24954123 [Abstract] [Full Text] [Related]
26. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW. Int J Biol Macromol; 2015 Apr 14; 75():44-50. PubMed ID: 25603148 [Abstract] [Full Text] [Related]
27. Preparation of an improved hydrophilic monolith to make trypsin-immobilized microreactors. Meller K, Pomastowski P, Szumski M, Buszewski B. J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Feb 01; 1043():128-137. PubMed ID: 27595484 [Abstract] [Full Text] [Related]
28. One-pot synthesis of trypsin-based magnetic metal-organic frameworks for highly efficient proteolysis. Zhong C, Lei Z, Huang H, Zhang M, Cai Z, Lin Z. J Mater Chem B; 2020 Jun 07; 8(21):4642-4647. PubMed ID: 32373807 [Abstract] [Full Text] [Related]
29. Enhancing Enzyme Stability and Functionality: Covalent Immobilization of Trypsin on Magnetic Gum Arabic Modified Fe3O4 Nanoparticles. Behshad Y, Pazhang M, Najavand S, Sabzi M. Appl Biochem Biotechnol; 2024 Aug 07; 196(8):5283-5300. PubMed ID: 38153653 [Abstract] [Full Text] [Related]
30. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. Bao H, Zhang L, Chen G. J Chromatogr A; 2013 Oct 04; 1310():74-81. PubMed ID: 23998335 [Abstract] [Full Text] [Related]
31. Immobilization of trypsin on miniature incandescent bulbs for infrared-assisted proteolysis. Ge H, Bao H, Zhang L, Chen G. Anal Chim Acta; 2014 Oct 03; 845():77-84. PubMed ID: 25201275 [Abstract] [Full Text] [Related]
32. Biopolymers conjugated with magnetite as support materials for trypsin immobilization and protein digestion. Zdarta J, Antecka K, Jędrzak A, Synoradzki K, Łuczak M, Jesionowski T. Colloids Surf B Biointerfaces; 2018 Sep 01; 169():118-125. PubMed ID: 29758537 [Abstract] [Full Text] [Related]
33. Immobilization of trypsin on sub-micron skeletal polymer monolith. Yao C, Qi L, Hu W, Wang F, Yang G. Anal Chim Acta; 2011 Apr 29; 692(1-2):131-7. PubMed ID: 21501722 [Abstract] [Full Text] [Related]
34. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Jiang H, Yuan H, Liang Y, Xia S, Zhao Q, Wu Q, Zhang L, Liang Z, Zhang Y. J Chromatogr A; 2012 Jul 13; 1246():111-6. PubMed ID: 22446077 [Abstract] [Full Text] [Related]
35. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads. Başak E, Aydemir T, Dinçer A, Becerik SÇ. Artif Cells Nanomed Biotechnol; 2013 Dec 13; 41(6):408-13. PubMed ID: 23687952 [Abstract] [Full Text] [Related]
36. Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping. Bao H, Lui T, Zhang L, Chen G. Proteomics; 2009 Feb 13; 9(4):1114-7. PubMed ID: 19180540 [Abstract] [Full Text] [Related]
37. Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: Stability & kinetic studies. Aggarwal S, Ikram S. Int J Biol Macromol; 2022 May 15; 207():205-221. PubMed ID: 35259431 [Abstract] [Full Text] [Related]
38. Bioconjugation of trypsin onto gold nanoparticles: effect of surface chemistry on bioactivity. Hinterwirth H, Lindner W, Lämmerhofer M. Anal Chim Acta; 2012 Jul 06; 733():90-7. PubMed ID: 22704381 [Abstract] [Full Text] [Related]
39. Immobilization of bovine catalase onto magnetic nanoparticles. Doğaç Yİ, Teke M. Prep Biochem Biotechnol; 2013 Jul 06; 43(8):750-65. PubMed ID: 23876136 [Abstract] [Full Text] [Related]
40. Oriented covalent immobilization of esterase BioH on hydrophilic-modified Fe3O4 nanoparticles. Li R, Jiang L, Ye L, Lu J, Yu H. Biotechnol Appl Biochem; 2014 Jul 06; 61(5):603-10. PubMed ID: 24484544 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]