These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


666 related items for PubMed ID: 2421146

  • 1. Sodium cotransport processes in renal epithelial cell lines.
    Rabito CA.
    Miner Electrolyte Metab; 1986; 12(1):32-41. PubMed ID: 2421146
    [Abstract] [Full Text] [Related]

  • 2. Sodium entry pathways in renal epithelial cell lines.
    Saier MH, Boerner P, Grenier FC, McRoberts JA, Rindler MJ, Taub M, U HS.
    Miner Electrolyte Metab; 1986; 12(1):42-50. PubMed ID: 2421147
    [Abstract] [Full Text] [Related]

  • 3. Maintenance of proximal and distal cell functions in SV40-transformed tubular cell lines derived from rabbit kidney cortex.
    Vandewalle A, Lelongt B, Geniteau-Legendre M, Baudouin B, Antoine M, Estrade S, Chatelet F, Verroust P, Cassingena R, Ronco P.
    J Cell Physiol; 1989 Oct; 141(1):203-21. PubMed ID: 2550481
    [Abstract] [Full Text] [Related]

  • 4. Expression of differentiated functions in kidney epithelial cell lines.
    Lever JE.
    Miner Electrolyte Metab; 1986 Oct; 12(1):14-9. PubMed ID: 2421145
    [Abstract] [Full Text] [Related]

  • 5. Na+ -phosphate cotransport in mouse distal convoluted tubule cells: evidence for Glvr-1 and Ram-1 gene expression.
    Tenenhouse HS, Gauthier C, Martel J, Gesek FA, Coutermarsh BA, Friedman PA.
    J Bone Miner Res; 1998 Apr; 13(4):590-7. PubMed ID: 9556059
    [Abstract] [Full Text] [Related]

  • 6. Regulation of Na+/glucose cotransport in LLC-PK1 cells by glucose in culture medium: involvement of Gi protein.
    Maruo J, Kurokawa T, Yasuda H, Ishibashi S.
    Biochem Mol Biol Int; 1993 Nov; 31(3):469-75. PubMed ID: 8118422
    [Abstract] [Full Text] [Related]

  • 7. Effects of confluence on phosphate transport capacity in cultured renal cell lines.
    Scheinman SJ.
    J Cell Physiol; 1988 Apr; 135(1):122-6. PubMed ID: 3366788
    [Abstract] [Full Text] [Related]

  • 8. Phosphate uptake by primary renal proximal tubule cell cultures grown in hormonally defined medium.
    Waqar MA, Seto J, Chung SD, Hiller-Grohol S, Taub M.
    J Cell Physiol; 1985 Sep; 124(3):411-23. PubMed ID: 3850091
    [Abstract] [Full Text] [Related]

  • 9. Ezrin promotes functional expression and parathyroid hormone-mediated regulation of the sodium-phosphate cotransporter 2a in LLC-PK1 cells.
    Mahon MJ.
    Am J Physiol Renal Physiol; 2008 Mar; 294(3):F667-75. PubMed ID: 18184743
    [Abstract] [Full Text] [Related]

  • 10. Comparative effects of Cd2+ and Cd-metallothionein on cultured kidney tubule cells.
    Blumenthal S, Lewand D, Krezoski SK, Petering DH.
    Toxicol Appl Pharmacol; 1996 Feb; 136(2):220-8. PubMed ID: 8619229
    [Abstract] [Full Text] [Related]

  • 11. Na+,K+ pump and Na+-coupled ion carriers in isolated mammalian kidney epithelial cells: regulation by protein kinase C.
    Gagnon F, Hamet P, Orlov SN.
    Can J Physiol Pharmacol; 1999 May; 77(5):305-19. PubMed ID: 10535680
    [Abstract] [Full Text] [Related]

  • 12. Apical trehalase expression associated with cell patterning after inducer treatment of LLC-PK1 monolayers.
    Yoneyama Y, Lever JE.
    J Cell Physiol; 1987 Jun; 131(3):330-41. PubMed ID: 3298285
    [Abstract] [Full Text] [Related]

  • 13. Identification of basolateral membrane targeting signal of human sodium-dependent dicarboxylate transporter 3.
    Bai X, Chen X, Feng Z, Hou K, Zhang P, Fu B, Shi S.
    J Cell Physiol; 2006 Mar; 206(3):821-30. PubMed ID: 16331647
    [Abstract] [Full Text] [Related]

  • 14. Developmentally regulated 75-kilodalton protein expressed in LLC-PK1 cultures is a component of the renal Na+/glucose cotransport system.
    Wu JS, Lever JE.
    J Cell Biochem; 1989 May; 40(1):83-9. PubMed ID: 2663890
    [Abstract] [Full Text] [Related]

  • 15. Regulation of Na+/glucose cotransporter (SGLT1) mRNA in LLC-PK1 cells.
    Yet SF, Kong CT, Peng H, Lever JE.
    J Cell Physiol; 1994 Mar; 158(3):506-12. PubMed ID: 7510295
    [Abstract] [Full Text] [Related]

  • 16. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells.
    Mitsuoka K, Shirasaka Y, Fukushi A, Sato M, Nakamura T, Nakanishi T, Tamai I.
    Biopharm Drug Dispos; 2009 Apr; 30(3):126-37. PubMed ID: 19322909
    [Abstract] [Full Text] [Related]

  • 17. Biphasic response of Na+-dependent amino acid transport to tumor promoting phorbol esters in cultured renal epithelial cells, LLC-PK1.
    Dawson WD, Cook JS.
    Prog Clin Biol Res; 1988 Apr; 258():121-33. PubMed ID: 3380819
    [Abstract] [Full Text] [Related]

  • 18. Polarity of proximal tubular epithelial cells in relation to transepithelial transport.
    Murer H, Evers J, Kinne R.
    Curr Probl Clin Biochem; 1976 Apr; 6():173-89. PubMed ID: 11964
    [Abstract] [Full Text] [Related]

  • 19. Comparison of the transcellular transport of FDG and D-glucose by the kidney epithelial cell line, LLC-PK1.
    Kobayashi M, Shikano N, Nishii R, Kiyono Y, Araki H, Nishi K, Oh M, Okudaira H, Ogura M, Yoshimoto M, Okazawa H, Fujibayashi Y, Kawai K.
    Nucl Med Commun; 2010 Feb; 31(2):141-6. PubMed ID: 19949354
    [Abstract] [Full Text] [Related]

  • 20. Cells of proximal and distal tubular origin respond differently to challenges of oxalate and calcium oxalate crystals.
    Thamilselvan S, Hackett RL, Khan SR.
    J Am Soc Nephrol; 1999 Nov; 10 Suppl 14():S452-6. PubMed ID: 10541282
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.