These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 24214105

  • 1. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins.
    Schüller-Ravoo S, Teixeira SM, Feijen J, Grijpma DW, Poot AA.
    Macromol Biosci; 2013 Dec; 13(12):1711-9. PubMed ID: 24214105
    [Abstract] [Full Text] [Related]

  • 2. Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography.
    Schüller-Ravoo S, Feijen J, Grijpma DW.
    Macromol Biosci; 2011 Dec 08; 11(12):1662-71. PubMed ID: 22006829
    [Abstract] [Full Text] [Related]

  • 3. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering.
    Song Y, Kamphuis MM, Zhang Z, Sterk LM, Vermes I, Poot AA, Feijen J, Grijpma DW.
    Acta Biomater; 2010 Apr 08; 6(4):1269-77. PubMed ID: 19818420
    [Abstract] [Full Text] [Related]

  • 4. Preparation of Designed Poly(trimethylene carbonate) Meniscus Implants by Stereolithography: Challenges in Stereolithography.
    van Bochove B, Hannink G, Buma P, Grijpma DW.
    Macromol Biosci; 2016 Dec 08; 16(12):1853-1863. PubMed ID: 27748548
    [Abstract] [Full Text] [Related]

  • 5. Flexible, elastic and tear-resistant networks prepared by photo-crosslinking poly(trimethylene carbonate) macromers.
    Schüller-Ravoo S, Feijen J, Grijpma DW.
    Acta Biomater; 2012 Oct 08; 8(10):3576-85. PubMed ID: 22688087
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering.
    Chaim IA, Sabino MA, Mendt M, Müller AJ, Ajami D.
    J Tissue Eng Regen Med; 2012 Apr 08; 6(4):272-9. PubMed ID: 21548137
    [Abstract] [Full Text] [Related]

  • 7. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y, Wennink JW, Kamphuis MM, Vermes I, Poot AA, Feijen J, Grijpma DW.
    J Biomed Mater Res A; 2010 Nov 08; 95(2):440-6. PubMed ID: 20648539
    [Abstract] [Full Text] [Related]

  • 8. Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds.
    Papenburg BJ, Schüller-Ravoo S, Bolhuis-Versteeg LA, Hartsuiker L, Grijpma DW, Feijen J, Wessling M, Stamatialis D.
    Acta Biomater; 2009 Nov 08; 5(9):3281-94. PubMed ID: 19463974
    [Abstract] [Full Text] [Related]

  • 9. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F, Li Z, Lannutti JL, Wagner WR, Guan J.
    Acta Biomater; 2009 Oct 08; 5(8):2901-12. PubMed ID: 19433136
    [Abstract] [Full Text] [Related]

  • 10. Preparation of a designed poly(trimethylene carbonate) microvascular network by stereolithography.
    Schüller-Ravoo S, Zant E, Feijen J, Grijpma DW.
    Adv Healthc Mater; 2014 Dec 08; 3(12):2004-11. PubMed ID: 25319598
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Evaluation of tubular poly(trimethylene carbonate) tissue engineering scaffolds in a circulating pulsatile flow system.
    Song Y, Wennink JW, Poot AA, Vermes I, Feijen J, Grijpma DW.
    Int J Artif Organs; 2011 Feb 08; 34(2):161-71. PubMed ID: 21374572
    [Abstract] [Full Text] [Related]

  • 13. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y, Wennink JW, Kamphuis MM, Sterk LM, Vermes I, Poot AA, Feijen J, Grijpma DW.
    Tissue Eng Part A; 2011 Feb 08; 17(3-4):381-7. PubMed ID: 20807005
    [Abstract] [Full Text] [Related]

  • 14. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation.
    Alves da Silva ML, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M, Hatton PV, Reis RL, Neves NM.
    Acta Biomater; 2010 Mar 08; 6(3):1149-57. PubMed ID: 19788942
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering.
    Tsai MC, Hung KC, Hung SC, Hsu SH.
    Colloids Surf B Biointerfaces; 2015 Jan 01; 125():34-44. PubMed ID: 25460599
    [Abstract] [Full Text] [Related]

  • 16. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D, Grad S, Gogolewski S, Alini M.
    J Biomed Mater Res A; 2010 Jan 01; 92(1):393-408. PubMed ID: 19191318
    [Abstract] [Full Text] [Related]

  • 17. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C, Wang L, Yang Z, Kim G, Chen H, Ge Z.
    J Biomater Sci Polym Ed; 2012 Jan 01; 23(1-4):405-24. PubMed ID: 21310105
    [Abstract] [Full Text] [Related]

  • 18. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering.
    Correia CR, Moreira-Teixeira LS, Moroni L, Reis RL, van Blitterswijk CA, Karperien M, Mano JF.
    Tissue Eng Part C Methods; 2011 Jul 01; 17(7):717-30. PubMed ID: 21517692
    [Abstract] [Full Text] [Related]

  • 19. Development of poly(trimethylene carbonate) network implants for annulus fibrosus tissue engineering.
    Blanquer SB, Sharifi S, Grijpma DW.
    J Appl Biomater Funct Mater; 2012 Jul 01; 10(3):177-84. PubMed ID: 23242873
    [Abstract] [Full Text] [Related]

  • 20. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y, Yang J, Khan S, Anissian L, Ameer GA.
    J Biomed Mater Res A; 2006 May 01; 77(2):331-9. PubMed ID: 16404714
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.