These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 24216422
21. Removal of coagulant aluminum from water treatment residuals by acid. Okuda T, Nishijima W, Sugimoto M, Saka N, Nakai S, Tanabe K, Ito J, Takenaka K, Okada M. Water Res; 2014 Sep 01; 60():75-81. PubMed ID: 24835954 [Abstract] [Full Text] [Related]
26. Arsenic immobilization in soils amended with drinking-water treatment residuals. Sarkar D, Makris KC, Vandanapu V, Datta R. Environ Pollut; 2007 Mar 01; 146(2):414-9. PubMed ID: 16939697 [Abstract] [Full Text] [Related]
27. The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. ter Laak TL, Wouter AG, Tolls J. Environ Toxicol Chem; 2006 Apr 01; 25(4):904-11. PubMed ID: 16629129 [Abstract] [Full Text] [Related]
28. Oxytetracycline interactions at the soil-water interface: effects of environmental surfaces on natural transformation and growth inhibition of Azotobacter vinelandii. Goetsch HE, Mylon SE, Butler S, Zilles JL, Nguyen TH. Environ Toxicol Chem; 2012 Oct 01; 31(10):2217-24. PubMed ID: 22821843 [Abstract] [Full Text] [Related]
30. Efficacy of drinking-water treatment residual in controlling off-site phosphorus losses: a field study in Florida. Agyin-Birikorang S, Oladeji OO, O'Connor GA, Obreza TA, Capece JC. J Environ Qual; 2009 Oct 01; 38(3):1076-85. PubMed ID: 19329695 [Abstract] [Full Text] [Related]
31. Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR). Zohar I, Ippolito JA, Massey MS, Litaor IM. Chemosphere; 2017 Feb 01; 168():234-243. PubMed ID: 27788362 [Abstract] [Full Text] [Related]
32. Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Jia M, Wang F, Bian Y, Jin X, Song Y, Kengara FO, Xu R, Jiang X. Bioresour Technol; 2013 May 01; 136():87-93. PubMed ID: 23567668 [Abstract] [Full Text] [Related]
33. Functionalizing non-smectic clay via methoxy-modification for enhanced removal and recovery of oxytetracycline from aqueous media. Ashiq A, Walpita J, Vithanage M. Chemosphere; 2021 Aug 01; 276():130079. PubMed ID: 33721631 [Abstract] [Full Text] [Related]
36. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. Nouri L, Ghodbane I, Hamdaoui O, Chiha M. J Hazard Mater; 2007 Oct 01; 149(1):115-25. PubMed ID: 17459582 [Abstract] [Full Text] [Related]
37. Water treatment residuals as soil amendments: Examining element extractability, soil porewater concentrations and effects on earthworm behaviour and survival. Howells AP, Lewis SJ, Beard DB, Oliver IW. Ecotoxicol Environ Saf; 2018 Oct 30; 162():334-340. PubMed ID: 30005406 [Abstract] [Full Text] [Related]
38. An efficient calix[4]arene based silica sorbent for the removal of endosulfan from water. Memon S, Memon N, Memon S, Latif Y. J Hazard Mater; 2011 Feb 28; 186(2-3):1696-703. PubMed ID: 21216532 [Abstract] [Full Text] [Related]
39. Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. Ramanayaka S, Sarkar B, Cooray AT, Ok YS, Vithanage M. J Hazard Mater; 2020 Feb 15; 384():121301. PubMed ID: 31600698 [Abstract] [Full Text] [Related]
40. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Gu C, Karthikeyan KG. Environ Sci Technol; 2005 Dec 01; 39(23):9166-73. PubMed ID: 16382938 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]