These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations. Hezaveh S, Samanta S, De Nicola A, Milano G, Roccatano D. J Phys Chem B; 2012 Dec 13; 116(49):14333-45. PubMed ID: 23137298 [Abstract] [Full Text] [Related]
3. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Firestone MA, Wolf AC, Seifert S. Biomacromolecules; 2003 Dec 13; 4(6):1539-49. PubMed ID: 14606878 [Abstract] [Full Text] [Related]
4. Electron density mapping of triblock copolymers associated with model biomembranes: insights into conformational states and effect on bilayer structure. Lee B, Firestone MA. Biomacromolecules; 2008 Jun 13; 9(6):1541-50. PubMed ID: 18452333 [Abstract] [Full Text] [Related]
5. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization. Cheng CY, Wang JY, Kausik R, Lee KY, Han S. Biomacromolecules; 2012 Sep 10; 13(9):2624-33. PubMed ID: 22808941 [Abstract] [Full Text] [Related]
6. Interaction of nonionic PEO-PPO diblock copolymers with lipid bilayers. Firestone MA, Seifert S. Biomacromolecules; 2005 Sep 10; 6(5):2678-87. PubMed ID: 16153106 [Abstract] [Full Text] [Related]
7. Diffusion of 1,2-dimethoxyethane and 1,2-dimethoxypropane through phosphatidycholine bilayers: a molecular dynamics study. Samanta S, Hezaveh S, Milano G, Roccatano D. J Phys Chem B; 2012 May 03; 116(17):5141-51. PubMed ID: 22409229 [Abstract] [Full Text] [Related]
8. Infrared reflection absorption spectroscopy coupled with Brewster angle microscopy for studying interactions of amphiphilic triblock copolymers with phospholipid monolayers. Amado E, Kerth A, Blume A, Kressler J. Langmuir; 2008 Sep 16; 24(18):10041-53. PubMed ID: 18698867 [Abstract] [Full Text] [Related]
9. Interaction of Curcumin with PEO-PPO-PEO block copolymers: a molecular dynamics study. Samanta S, Roccatano D. J Phys Chem B; 2013 Mar 21; 117(11):3250-7. PubMed ID: 23441964 [Abstract] [Full Text] [Related]
10. Synthetic polymers and biomembranes. How do they interact? Atomistic molecular dynamics simulation study of PEO in contact with a DMPC lipid bilayer. Pal S, Milano G, Roccatano D. J Phys Chem B; 2006 Dec 28; 110(51):26170-9. PubMed ID: 17181272 [Abstract] [Full Text] [Related]
11. Effects of block copolymer's architecture on its association with lipid membranes: experiments and simulations. Frey SL, Zhang D, Carignano MA, Szleifer I, Lee KY. J Chem Phys; 2007 Sep 21; 127(11):114904. PubMed ID: 17887877 [Abstract] [Full Text] [Related]
12. Lamellar-to-cubic phase change in phospholipid bilayer systems incorporated with block copolymers: DMPC and PEO-PPO-PEO (P85). Ishøy T, Mortensen K. Langmuir; 2005 Mar 01; 21(5):1766-75. PubMed ID: 15723471 [Abstract] [Full Text] [Related]
13. Molecular dynamics simulation study of solvent effects on conformation and dynamics of polyethylene oxide and polypropylene oxide chains in water and in common organic solvents. Hezaveh S, Samanta S, Milano G, Roccatano D. J Chem Phys; 2012 Mar 28; 136(12):124901. PubMed ID: 22462889 [Abstract] [Full Text] [Related]
14. Properties of Poloxamer Molecules and Poloxamer Micelles Dissolved in Water and Next to Lipid Bilayers: Results from Computer Simulations. Adhikari U, Goliaei A, Tsereteli L, Berkowitz ML. J Phys Chem B; 2016 Jul 07; 120(26):5823-30. PubMed ID: 26719970 [Abstract] [Full Text] [Related]
15. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties. Schwieger C, Achilles A, Scholz S, Rüger J, Bacia K, Saalwaechter K, Kressler J, Blume A. Soft Matter; 2014 Sep 07; 10(33):6147-60. PubMed ID: 24942348 [Abstract] [Full Text] [Related]
16. Effect of pharmaceutically acceptable glycols on the stability of the liquid crystalline gels formed by Poloxamer 407 in water. Ivanova R, Lindman B, Alexandridis P. J Colloid Interface Sci; 2002 Aug 01; 252(1):226-35. PubMed ID: 16290783 [Abstract] [Full Text] [Related]
17. Characterization and demulsification of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Zhang Z, Xu GY, Wang F, Dong SL, Li YM. J Colloid Interface Sci; 2004 Sep 15; 277(2):464-70. PubMed ID: 15341860 [Abstract] [Full Text] [Related]
18. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin. Li J, Ni X, Zhou Z, Leong KW. J Am Chem Soc; 2003 Feb 19; 125(7):1788-95. PubMed ID: 12580604 [Abstract] [Full Text] [Related]
19. Water is a poor solvent for densely grafted poly(ethylene oxide) chains: a conclusion drawn from a self-consistent field theory-based analysis of neutron reflectivity and surface pressure-area isotherm data. Lee H, Kim DH, Witte KN, Ohn K, Choi J, Akgun B, Satija S, Won YY. J Phys Chem B; 2012 Jun 21; 116(24):7367-78. PubMed ID: 22616550 [Abstract] [Full Text] [Related]
20. All-Atom Molecular Dynamics-Based Analysis of Membrane-Stabilizing Copolymer Interactions with Lipid Bilayers Probed under Constant Surface Tensions. Houang EM, Bates FS, Sham YY, Metzger JM. J Phys Chem B; 2017 Nov 30; 121(47):10657-10664. PubMed ID: 29049887 [Abstract] [Full Text] [Related] Page: [Next] [New Search]