These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
687 related items for PubMed ID: 24219622
21. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Lei Y, Xu Z, Ke Q, Yin W, Chen Y, Zhang C, Guo Y. Mater Sci Eng C Mater Biol Appl; 2017 Mar 01; 72():134-142. PubMed ID: 28024569 [Abstract] [Full Text] [Related]
22. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. He P, Sahoo S, Ng KS, Chen K, Toh SL, Goh JC. J Biomed Mater Res A; 2013 Feb 01; 101(2):555-66. PubMed ID: 22949167 [Abstract] [Full Text] [Related]
23. The osteogenic properties of CaP/silk composite scaffolds. Zhang Y, Wu C, Friis T, Xiao Y. Biomaterials; 2010 Apr 01; 31(10):2848-56. PubMed ID: 20071025 [Abstract] [Full Text] [Related]
24. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering. Wang G, Zheng L, Zhao H, Miao J, Sun C, Ren N, Wang J, Liu H, Tao X. Tissue Eng Part A; 2011 May 01; 17(9-10):1341-9. PubMed ID: 21247339 [Abstract] [Full Text] [Related]
25. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway. Wang J, Wang M, Chen F, Wei Y, Chen X, Zhou Y, Yang X, Zhu X, Tu C, Zhang X. Int J Nanomedicine; 2019 May 01; 14():7987-8000. PubMed ID: 31632013 [Abstract] [Full Text] [Related]
26. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Gao X, Zhang X, Song J, Xu X, Xu A, Wang M, Xie B, Huang E, Deng F, Wei S. Int J Nanomedicine; 2015 May 01; 10():7109-28. PubMed ID: 26604759 [Abstract] [Full Text] [Related]
30. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. He F, Li J, Ye J. Colloids Surf B Biointerfaces; 2013 Mar 01; 103():209-16. PubMed ID: 23201739 [Abstract] [Full Text] [Related]
34. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds. Fonseca-García A, Mota-Morales JD, Quintero-Ortega IA, García-Carvajal ZY, Martínez-López V, Ruvalcaba E, Landa-Solís C, Solis L, Ibarra C, Gutiérrez MC, Terrones M, Sanchez IC, del Monte F, Velasquillo MC, Luna-Bárcenas G. J Biomed Mater Res A; 2014 Oct 01; 102(10):3341-51. PubMed ID: 23894015 [Abstract] [Full Text] [Related]
35. A novel tripolymer coating demonstrating the synergistic effect of chitosan, collagen type 1 and hyaluronic acid on osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Mathews S, Bhonde R, Gupta PK, Totey S. Biochem Biophys Res Commun; 2011 Oct 14; 414(1):270-6. PubMed ID: 21951845 [Abstract] [Full Text] [Related]
37. Effects of the surface characteristics of nano-crystalline and micro-particle calcium phosphate/chitosan composite films on the behavior of human mesenchymal stem cells in vitro. Lee YT, Yu BY, Shao HJ, Chang CH, Sun YM, Liu HC, Hou SM, Young TH. J Biomater Sci Polym Ed; 2011 Oct 14; 22(17):2369-88. PubMed ID: 21144163 [Abstract] [Full Text] [Related]