These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 24221096
1. Simultaneous estimation ofV max, K m, and the rate of endogenous substrate production (R) from substrate depletion data. Robinson JA, Characklis WG. Microb Ecol; 1984 Jun; 10(2):165-78. PubMed ID: 24221096 [Abstract] [Full Text] [Related]
2. Accurate kinetic parameter estimation during progress curve analysis of systems with endogenous substrate production. Goudar CT. Biotechnol Bioeng; 2011 Oct; 108(10):2499-503. PubMed ID: 21520020 [Abstract] [Full Text] [Related]
3. Comparison of various estimation methods for the parameters of Michaelis-Menten equation based on in vitro elimination kinetic simulation data. Cho YS, Lim HS. Transl Clin Pharmacol; 2018 Mar; 26(1):39-47. PubMed ID: 32055546 [Abstract] [Full Text] [Related]
4. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables. Liao F, Zhu XY, Wang YM, Zuo YP. J Biochem Biophys Methods; 2005 Jan 31; 62(1):13-24. PubMed ID: 15656940 [Abstract] [Full Text] [Related]
5. Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Robinson JA, Tiedje JM. Appl Environ Microbiol; 1983 May 31; 45(5):1453-8. PubMed ID: 6870238 [Abstract] [Full Text] [Related]
6. An explicit solution for progress curve analysis in systems characterized by endogenous substrate production. Goudar CT. Microb Ecol; 2012 May 31; 63(4):898-904. PubMed ID: 22198685 [Abstract] [Full Text] [Related]
7. Kinetic substrate quantification by fitting the enzyme reaction curve to the integrated Michaelis-Menten equation. Liao F, Tian KC, Yang X, Zhou QX, Zeng ZC, Zuo YP. Anal Bioanal Chem; 2003 Mar 31; 375(6):756-62. PubMed ID: 12664174 [Abstract] [Full Text] [Related]
8. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations. Goličnik M. Biochem Mol Biol Educ; 2011 Mar 31; 39(2):117-25. PubMed ID: 21445903 [Abstract] [Full Text] [Related]
9. Parameter estimation using a direct solution of the integrated Michaelis-Menten equation. Goudar CT, Sonnad JR, Duggleby RG. Biochim Biophys Acta; 1999 Jan 11; 1429(2):377-83. PubMed ID: 9989222 [Abstract] [Full Text] [Related]
14. Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function. Goudar CT, Harris SK, McInerney MJ, Suflita JM. J Microbiol Methods; 2004 Dec 11; 59(3):317-26. PubMed ID: 15488275 [Abstract] [Full Text] [Related]
15. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question. Schnell S. FEBS J; 2014 Jan 11; 281(2):464-72. PubMed ID: 24245583 [Abstract] [Full Text] [Related]
16. Half-time analysis of the integrated Michaelis equation. Simulation and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin, papain- and fumarase-catalysed reactions. Wharton CW, Szawelski RJ. Biochem J; 1982 May 01; 203(2):351-60. PubMed ID: 7115291 [Abstract] [Full Text] [Related]
18. Spreadsheet method for evaluation of biochemical reaction rate coefficients and their uncertainties by weighted nonlinear least-squares analysis of the integrated monod equation. Smith LH, McCarty PL, Kitanidis PK. Appl Environ Microbiol; 1998 Jun 01; 64(6):2044-50. PubMed ID: 9603812 [Abstract] [Full Text] [Related]