These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


733 related items for PubMed ID: 24224888

  • 1. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.
    Puster M, Rodríguez-Manzo JA, Balan A, Drndić M.
    ACS Nano; 2013 Dec 23; 7(12):11283-9. PubMed ID: 24224888
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Detecting the translocation of DNA through a nanopore using graphene nanoribbons.
    Traversi F, Raillon C, Benameur SM, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A.
    Nat Nanotechnol; 2013 Dec 23; 8(12):939-45. PubMed ID: 24240429
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Electronic transport of recrystallized freestanding graphene nanoribbons.
    Qi ZJ, Daniels C, Hong SJ, Park YW, Meunier V, Drndić M, Johnson AT.
    ACS Nano; 2015 Dec 23; 9(4):3510-20. PubMed ID: 25738404
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW, Biskupek J, Rance GA, Chuvilin A, Alexander TJ, Bichoutskaia E, Kaiser U, Khlobystov AN.
    ACS Nano; 2012 May 22; 6(5):3943-53. PubMed ID: 22483078
    [Abstract] [Full Text] [Related]

  • 11. Noise and its reduction in graphene based nanopore devices.
    Kumar A, Park KB, Kim HM, Kim KB.
    Nanotechnology; 2013 Dec 13; 24(49):495503. PubMed ID: 24240186
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. First-Principles Investigation of Nanopore Sequencing Using Variable Voltage Bias on Graphene-Based Nanoribbons.
    McFarland HL, Ahmed T, Zhu JX, Balatsky AV, Haraldsen JT.
    J Phys Chem Lett; 2015 Jul 02; 6(13):2616-21. PubMed ID: 26266743
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Fast and controllable fabrication of suspended graphene nanopore devices.
    Liu S, Zhao Q, Xu J, Yan K, Peng H, Yang F, You L, Yu D.
    Nanotechnology; 2012 Mar 02; 23(8):085301. PubMed ID: 22293107
    [Abstract] [Full Text] [Related]

  • 18. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF, Wang LL, Chen KQ, Luo Y.
    J Phys Condens Matter; 2012 Mar 07; 24(9):095801. PubMed ID: 22317831
    [Abstract] [Full Text] [Related]

  • 19. Correlating atomic structure and transport in suspended graphene nanoribbons.
    Qi ZJ, Rodríguez-Manzo JA, Botello-Méndez AR, Hong SJ, Stach EA, Park YW, Charlier JC, Drndić M, Johnson AT.
    Nano Lett; 2014 Aug 13; 14(8):4238-44. PubMed ID: 24954396
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.