These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mechanism of action of the C4 nephritic factor. Deregulation of the classical pathway of C3 convertase. Gigli I, Sorvillo J, Mecarelli-Halbwachs L, Leibowitch J. J Exp Med; 1981 Jul 01; 154(1):1-12. PubMed ID: 7019379 [Abstract] [Full Text] [Related]
3. Protection of the classical and alternative complement pathway C3 convertases, stabilized by nephritic factors, from decay by the human C3b receptor. Fischer E, Kazatchkine MD, Mecarelli-Halbwachs L. Eur J Immunol; 1984 Dec 01; 14(12):1111-4. PubMed ID: 6240408 [Abstract] [Full Text] [Related]
4. A model system for the study of the assembly and regulation of human complement C3 convertase (classical pathway). Thielens NM, Colomb MG. Eur J Immunol; 1986 Jun 01; 16(6):617-22. PubMed ID: 3487454 [Abstract] [Full Text] [Related]
7. The low C5 convertase activity of the C4A6 allotype of human complement component C4. Kinoshita T, Dodds AW, Law SK, Inoue K. Biochem J; 1989 Aug 01; 261(3):743-8. PubMed ID: 2803239 [Abstract] [Full Text] [Related]
8. Covalent association of C3b with C4b within C5 convertase of the classical complement pathway. Takata Y, Kinoshita T, Kozono H, Takeda J, Tanaka E, Hong K, Inoue K. J Exp Med; 1987 Jun 01; 165(6):1494-507. PubMed ID: 3495629 [Abstract] [Full Text] [Related]
9. Mechanism of activation of the classical pathway of complement by monoclonal IgE (DES). Restricted regulation of C4b by C4b-binding protein. Saint-Remy JM. Eur J Immunol; 1984 Mar 01; 14(3):254-9. PubMed ID: 6608450 [Abstract] [Full Text] [Related]
11. The effects of iodine and thiol-blocking reagents on complement component C2 and on the assembly of the classical-pathway C3 convertase. Kerr MA, Parkes C. Biochem J; 1984 Apr 15; 219(2):391-9. PubMed ID: 6611150 [Abstract] [Full Text] [Related]
12. Purification and characterization of the C3 convertase of the classical pathway of human complement system by size exclusion high-performance liquid chromatography. Nagasawa S, Kobayashi C, Maki-Suzuki T, Yamashita N, Koyama J. J Biochem; 1985 Feb 15; 97(2):493-9. PubMed ID: 3874204 [Abstract] [Full Text] [Related]
13. Localization of the covalent C3b-binding site on C4b within the complement classical pathway C5 convertase, C4b2a3b. Kozono H, Kinoshita T, Kim YU, Takata-Kozono Y, Tsunasawa S, Sakiyama F, Takeda J, Hong K, Inoue K. J Biol Chem; 1990 Aug 25; 265(24):14444-9. PubMed ID: 2387864 [Abstract] [Full Text] [Related]
14. The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociating C2a and Bb. Fujita T, Inoue T, Ogawa K, Iida K, Tamura N. J Exp Med; 1987 Nov 01; 166(5):1221-8. PubMed ID: 2445886 [Abstract] [Full Text] [Related]
16. Regulation and deregulation of the fluid-phase classical pathway C3 convertase. Gigli I, Sorvillo J, Halbwachs-Mecarelli L. J Immunol; 1985 Jul 01; 135(1):440-4. PubMed ID: 3158705 [Abstract] [Full Text] [Related]
17. Differences between the binding sites of the complement regulatory proteins DAF, CR1, and factor H on C3 convertases. Pangburn MK. J Immunol; 1986 Mar 15; 136(6):2216-21. PubMed ID: 2419425 [Abstract] [Full Text] [Related]
18. Covalent binding of C3b to C4b within the classical complement pathway C5 convertase. Determination of amino acid residues involved in ester linkage formation. Kim YU, Carroll MC, Isenman DE, Nonaka M, Pramoonjago P, Takeda J, Inoue K, Kinoshita T. J Biol Chem; 1992 Feb 25; 267(6):4171-6. PubMed ID: 1740458 [Abstract] [Full Text] [Related]