These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


443 related items for PubMed ID: 24229301

  • 1. Dynamics of solutes with hydrodynamic interactions: comparison between Brownian dynamics and stochastic rotation dynamics simulations.
    Batôt G, Dahirel V, Mériguet G, Louis AA, Jardat M.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043304. PubMed ID: 24229301
    [Abstract] [Full Text] [Related]

  • 2. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A, Videcoq A, Chartier T, Ala-Nissilä T, Vattulainen I.
    J Chem Phys; 2012 Jul 07; 137(1):014503. PubMed ID: 22779661
    [Abstract] [Full Text] [Related]

  • 3. Transport coefficients of aqueous dodecyltrimethylammonium bromide solutions: comparison between experiments, analytical calculations and numerical simulations.
    Jardat M, Durand-Vidal S, Da Mota N, Turq P.
    J Chem Phys; 2004 Apr 01; 120(13):6268-73. PubMed ID: 15267514
    [Abstract] [Full Text] [Related]

  • 4. Comparison of different coupling schemes between counterions and charged nanoparticles in multiparticle collision dynamics.
    Dahirel V, Zhao X, Jardat M.
    Phys Rev E; 2016 Aug 01; 94(2-1):023317. PubMed ID: 27627422
    [Abstract] [Full Text] [Related]

  • 5. Mesoscale hydrodynamics via stochastic rotation dynamics: comparison with Lennard-Jones fluid.
    Petersen MK, Lechman JB, Plimpton SJ, Grest GS, in 't Veld PJ, Schunk PR.
    J Chem Phys; 2010 May 07; 132(17):174106. PubMed ID: 20459155
    [Abstract] [Full Text] [Related]

  • 6. Are hydrodynamic interactions important in the kinetics of hydrophobic collapse?
    Li J, Morrone JA, Berne BJ.
    J Phys Chem B; 2012 Sep 20; 116(37):11537-44. PubMed ID: 22931395
    [Abstract] [Full Text] [Related]

  • 7. Two-scale Brownian dynamics of suspensions of charged nanoparticles including electrostatic and hydrodynamic interactions.
    Dahirel V, Jardat M, Dufrêche JF, Turq P.
    J Chem Phys; 2009 Dec 21; 131(23):234105. PubMed ID: 20025312
    [Abstract] [Full Text] [Related]

  • 8. From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study.
    Theers M, Westphal E, Gompper G, Winkler RG.
    Phys Rev E; 2016 Mar 21; 93(3):032604. PubMed ID: 27078411
    [Abstract] [Full Text] [Related]

  • 9. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.
    Mereghetti P, Wade RC.
    J Phys Chem B; 2012 Jul 26; 116(29):8523-33. PubMed ID: 22594708
    [Abstract] [Full Text] [Related]

  • 10. Simulation of claylike colloids.
    Hecht M, Harting J, Ihle T, Herrmann HJ.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul 26; 72(1 Pt 1):011408. PubMed ID: 16089962
    [Abstract] [Full Text] [Related]

  • 11. Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales.
    Padding JT, Louis AA.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep 26; 74(3 Pt 1):031402. PubMed ID: 17025630
    [Abstract] [Full Text] [Related]

  • 12. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A, Videcoq A, Cerbelaud M, Piechowiak MA, Chartier T, Ala-Nissila T, Bochicchio D, Ferrando R.
    J Phys Chem B; 2013 Nov 21; 117(46):14509-17. PubMed ID: 24143912
    [Abstract] [Full Text] [Related]

  • 13. Computation of shear viscosity of colloidal suspensions by SRD-MD.
    Laganapan AM, Videcoq A, Bienia M, Ala-Nissila T, Bochicchio D, Ferrando R.
    J Chem Phys; 2015 Apr 14; 142(14):144101. PubMed ID: 25877556
    [Abstract] [Full Text] [Related]

  • 14. Interplay between hydrodynamics and the free energy surface in the assembly of nanoscale hydrophobes.
    Morrone JA, Li J, Berne BJ.
    J Phys Chem B; 2012 Jan 12; 116(1):378-89. PubMed ID: 22142269
    [Abstract] [Full Text] [Related]

  • 15. Thermal fluctuations in nanofluidic transport.
    Detcheverry F, Bocquet L.
    Phys Rev Lett; 2012 Jul 13; 109(2):024501. PubMed ID: 23030164
    [Abstract] [Full Text] [Related]

  • 16. How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions.
    Laganapan AM, Mouas M, Videcoq A, Cerbelaud M, Bienia M, Bowen P, Ferrando R.
    J Colloid Interface Sci; 2015 Nov 15; 458():241-6. PubMed ID: 26232284
    [Abstract] [Full Text] [Related]

  • 17. Toward Hydrodynamics with Solvent Free Lipid Models: STRD Martini.
    Zgorski A, Lyman E.
    Biophys J; 2016 Dec 20; 111(12):2689-2697. PubMed ID: 28002745
    [Abstract] [Full Text] [Related]

  • 18. Implicit and explicit solvent models for the simulation of a single polymer chain in solution: Lattice Boltzmann versus Brownian dynamics.
    Pham TT, Schiller UD, Prakash JR, Dünweg B.
    J Chem Phys; 2009 Oct 28; 131(16):164114. PubMed ID: 19894934
    [Abstract] [Full Text] [Related]

  • 19. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics.
    Miao L, Young CD, Sing CE.
    J Chem Phys; 2017 Jul 14; 147(2):024904. PubMed ID: 28711045
    [Abstract] [Full Text] [Related]

  • 20. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
    Furukawa A, Marenduzzo D, Cates ME.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug 14; 90(2):022303. PubMed ID: 25215734
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.