These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 2423179

  • 1. Neurophysiology of limbic system pathways in the rat: projections from the amygdala to the entorhinal cortex.
    Finch DM, Wong EE, Derian EL, Chen XH, Nowlin-Finch NL, Brothers LA.
    Brain Res; 1986 Apr 09; 370(2):273-84. PubMed ID: 2423179
    [Abstract] [Full Text] [Related]

  • 2. Neurophysiology of limbic system pathways in the rat: projections from the subicular complex and hippocampus to the entorhinal cortex.
    Finch DM, Wong EE, Derian EL, Babb TL.
    Brain Res; 1986 Nov 12; 397(2):205-13. PubMed ID: 3542119
    [Abstract] [Full Text] [Related]

  • 3. Physiological evidence for an excitatory pathway from entorhinal cortex to amygdala in the rat.
    Brothers LA, Finch DM.
    Brain Res; 1985 Dec 16; 359(1-2):10-20. PubMed ID: 4075137
    [Abstract] [Full Text] [Related]

  • 4. Functional reciprocal connections of the rat entorhinal cortex and subicular complex with the medial frontal cortex: an in vivo intracellular study.
    White TD, Tan AM, Finch DM.
    Brain Res; 1990 Nov 12; 533(1):95-106. PubMed ID: 2085739
    [Abstract] [Full Text] [Related]

  • 5. Lateral entorhinal, perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: a current source density study.
    Canning KJ, Leung LS.
    Hippocampus; 1997 Nov 12; 7(6):643-55. PubMed ID: 9443060
    [Abstract] [Full Text] [Related]

  • 6. Neurophysiology of the caudally directed hippocampal efferent system in the rat: projections to the subicular complex.
    Finch DM, Babb TL.
    Brain Res; 1980 Sep 15; 197(1):11-26. PubMed ID: 7397548
    [Abstract] [Full Text] [Related]

  • 7. Electrical activity generated in subicular and entorhinal cortices after electrical stimulation of the lateral and basolateral amygdala of the rat.
    Colino A, Fernández de Molina A.
    Neuroscience; 1986 Oct 15; 19(2):573-80. PubMed ID: 3774155
    [Abstract] [Full Text] [Related]

  • 8. Amygdaloid complex modulates neurotransmission from the entorhinal cortex to the dentate gyrus of the rat.
    Thomas SR, Assaf SY, Iversen SD.
    Brain Res; 1984 Jul 30; 307(1-2):363-5. PubMed ID: 6087989
    [Abstract] [Full Text] [Related]

  • 9. Electrophysiological study of the response of medial prefrontal cortex neurons to stimulation of the basolateral nucleus of the amygdala in the rat.
    Pérez-Jaranay JM, Vives F.
    Brain Res; 1991 Nov 08; 564(1):97-101. PubMed ID: 1777825
    [Abstract] [Full Text] [Related]

  • 10. Lateral entorhinal cortical kindling can be established without potentiation of the entorhinal-granule cell synapse.
    Giacchino JL, Somjen GG, Frush DP, McNamara JO.
    Exp Neurol; 1984 Dec 08; 86(3):483-92. PubMed ID: 6499989
    [Abstract] [Full Text] [Related]

  • 11. Convergence of projections from the rat hippocampal formation, medial geniculate and basal forebrain onto single amygdaloid neurons: an in vivo extra- and intracellular electrophysiological study.
    Mello LE, Tan AM, Finch DM.
    Brain Res; 1992 Jul 31; 587(1):24-40. PubMed ID: 1525648
    [Abstract] [Full Text] [Related]

  • 12. Electrophysiological analysis of the projection from the contralateral entorhinal cortex to the dentate gyrus in normal rats.
    White WF, Goldowitz D, Lynch G, Cotman CW.
    Brain Res; 1976 Sep 17; 114(2):201-9. PubMed ID: 963548
    [Abstract] [Full Text] [Related]

  • 13. Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains.
    Lingenhöhl K, Finch DM.
    Exp Brain Res; 1991 Sep 17; 84(1):57-74. PubMed ID: 1713171
    [Abstract] [Full Text] [Related]

  • 14. Midline thalamic region: widespread excitatory input to the entorhinal cortex and amygdala.
    Zhang DX, Bertram EH.
    J Neurosci; 2002 Apr 15; 22(8):3277-84. PubMed ID: 11943829
    [Abstract] [Full Text] [Related]

  • 15. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.
    Scharfman HE, Goodman JH, Du F, Schwarcz R.
    J Neurophysiol; 1998 Dec 15; 80(6):3031-46. PubMed ID: 9862904
    [Abstract] [Full Text] [Related]

  • 16. Commissural responses of rat retrohippocampal neurons.
    Isokawa M, Finch DM.
    Brain Res; 1991 Jun 14; 551(1-2):94-103. PubMed ID: 1913168
    [Abstract] [Full Text] [Related]

  • 17. Topography between the entorhinal cortex and the dentate septotemporal axis in rats: I. Medial and intermediate entorhinal projecting cells.
    Ruth RE, Collier TJ, Routtenberg A.
    J Comp Neurol; 1982 Jul 20; 209(1):69-78. PubMed ID: 7119174
    [Abstract] [Full Text] [Related]

  • 18. Functional connections in the human temporal lobe. I. Analysis of limbic system pathways using neuronal responses evoked by electrical stimulation.
    Wilson CL, Isokawa M, Babb TL, Crandall PH.
    Exp Brain Res; 1990 Jul 20; 82(2):279-92. PubMed ID: 2286232
    [Abstract] [Full Text] [Related]

  • 19. An electrophysiological study of amygdalohypothalamic projections to the ventromedial nucleus of the rat.
    Renaud LP.
    Brain Res; 1976 Mar 19; 105(1):45-58. PubMed ID: 1252957
    [Abstract] [Full Text] [Related]

  • 20. Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens.
    Finch DM.
    Hippocampus; 1996 Mar 19; 6(5):495-512. PubMed ID: 8953303
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.