These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 24237249

  • 1. Life cycle assessment of vehicle lightweighting: a physics-based model of mass-induced fuel consumption.
    Kim HC, Wallington TJ.
    Environ Sci Technol; 2013 Dec 17; 47(24):14358-66. PubMed ID: 24237249
    [Abstract] [Full Text] [Related]

  • 2. Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption.
    Kim HC, Wallington TJ, Sullivan JL, Keoleian GA.
    Environ Sci Technol; 2015 Aug 18; 49(16):10209-16. PubMed ID: 26168234
    [Abstract] [Full Text] [Related]

  • 3. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.
    Kim HC, Wallington TJ.
    Environ Sci Technol; 2016 Oct 18; 50(20):11226-11233. PubMed ID: 27533735
    [Abstract] [Full Text] [Related]

  • 4. Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization.
    Kim HC, Wallington TJ.
    Environ Sci Technol; 2013 Jun 18; 47(12):6089-97. PubMed ID: 23668335
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.
    Kelly JC, Sullivan JL, Burnham A, Elgowainy A.
    Environ Sci Technol; 2015 Oct 20; 49(20):12535-42. PubMed ID: 26393414
    [Abstract] [Full Text] [Related]

  • 7. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A, Azevedo IM, Michalek JJ.
    Environ Sci Technol; 2016 Mar 01; 50(5):2165-74. PubMed ID: 26867100
    [Abstract] [Full Text] [Related]

  • 8. A Dynamic Fleet Model of U.S Light-Duty Vehicle Lightweighting and Associated Greenhouse Gas Emissions from 2016 to 2050.
    Milovanoff A, Kim HC, De Kleine R, Wallington TJ, Posen ID, MacLean HL.
    Environ Sci Technol; 2019 Feb 19; 53(4):2199-2208. PubMed ID: 30682256
    [Abstract] [Full Text] [Related]

  • 9. A life-cycle comparison of alternative automobile fuels.
    MacLean HL, Lave LB, Lankey R, Joshi S.
    J Air Waste Manag Assoc; 2000 Oct 19; 50(10):1769-79. PubMed ID: 11288305
    [Abstract] [Full Text] [Related]

  • 10. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R, Kamath D, Anctil A.
    J Environ Manage; 2022 Apr 15; 308():114592. PubMed ID: 35121453
    [Abstract] [Full Text] [Related]

  • 11. Green Principles for Vehicle Lightweighting.
    Lewis GM, Buchanan CA, Jhaveri KD, Sullivan JL, Kelly JC, Das S, Taub AI, Keoleian GA.
    Environ Sci Technol; 2019 Apr 16; 53(8):4063-4077. PubMed ID: 30892881
    [Abstract] [Full Text] [Related]

  • 12. Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles.
    Wu D, Guo F, Field FR, De Kleine RD, Kim HC, Wallington TJ, Kirchain RE.
    Environ Sci Technol; 2019 Sep 17; 53(18):10560-10570. PubMed ID: 31336049
    [Abstract] [Full Text] [Related]

  • 13. Economic and environmental benefits of higher-octane gasoline.
    Speth RL, Chow EW, Malina R, Barrett SR, Heywood JB, Green WH.
    Environ Sci Technol; 2014 Jun 17; 48(12):6561-8. PubMed ID: 24870412
    [Abstract] [Full Text] [Related]

  • 14. Energy-saving and emission-reduction potential of fuel cell heavy-duty trucks in China during the fuel life cycle.
    Yan R, Jiang Z.
    Environ Sci Pollut Res Int; 2023 Jul 17; 30(33):80559-80572. PubMed ID: 37296253
    [Abstract] [Full Text] [Related]

  • 15. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective.
    Gan Y, Lu Z, He X, Hao C, Wang Y, Cai H, Wang M, Elgowainy A, Przesmitzki S, Bouchard J.
    Environ Sci Technol; 2021 May 18; 55(10):6944-6956. PubMed ID: 33945267
    [Abstract] [Full Text] [Related]

  • 16. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.
    Stettler ME, Midgley WJ, Swanson JJ, Cebon D, Boies AM.
    Environ Sci Technol; 2016 Feb 16; 50(4):2018-26. PubMed ID: 26757000
    [Abstract] [Full Text] [Related]

  • 17. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.
    Cai H, Wang MQ.
    Environ Sci Technol; 2014 Oct 21; 48(20):12445-53. PubMed ID: 25259852
    [Abstract] [Full Text] [Related]

  • 18. Effects of ethanol on vehicle energy efficiency and implications on ethanol life-cycle greenhouse gas analysis.
    Yan X, Inderwildi OR, King DA, Boies AM.
    Environ Sci Technol; 2013 Jun 04; 47(11):5535-44. PubMed ID: 23627549
    [Abstract] [Full Text] [Related]

  • 19. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures.
    Zhu R, Hu J, Bao X, He L, Lai Y, Zu L, Li Y, Su S.
    Environ Pollut; 2016 Sep 04; 216():223-234. PubMed ID: 27267738
    [Abstract] [Full Text] [Related]

  • 20. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.
    Thiruvengadam A, Besch M, Carder D, Oshinuga A, Pasek R, Hogo H, Gautam M.
    J Air Waste Manag Assoc; 2016 Nov 04; 66(11):1045-1060. PubMed ID: 26950051
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.