These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle. Schmid-Antomarchi H, Renaud JF, Romey G, Hugues M, Schmid A, Lazdunski M. Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2188-91. PubMed ID: 2580309 [Abstract] [Full Text] [Related]
3. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Blatz AL, Magleby KL. Nature; 1985 Apr; 323(6090):718-20. PubMed ID: 2430185 [Abstract] [Full Text] [Related]
8. The apamin-sensitive Ca2+-dependent K+ channel molecular properties, differentiation and endogenous ligands in mammalian brain. Lazdunski M, Fosset M, Hughes M, Mourre C, Romey G, Schmid-Antomarchi H. Biochem Soc Symp; 1985 Sep 12; 50():31-42. PubMed ID: 2428371 [Abstract] [Full Text] [Related]
9. Apamin, a highly specific Ca2+ blocking agent in heart muscle. Bkaily G, Sperelakis N, Renaud JF, Payet MD. Am J Physiol; 1985 Jun 12; 248(6 Pt 2):H961-5. PubMed ID: 2408493 [Abstract] [Full Text] [Related]
10. Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons. Zhang L, Krnjević K. Neurosci Lett; 1987 Feb 10; 74(1):58-62. PubMed ID: 2436107 [Abstract] [Full Text] [Related]
11. Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons. Rieger F, Bournaud R, Shimahara T, Garcia L, Pinçon-Raymond M, Romey G, Lazdunski M. Nature; 1987 Feb 10; 330(6148):563-6. PubMed ID: 2446145 [Abstract] [Full Text] [Related]
12. Apamin, a neurotoxin specific for one class of Ca2+-dependent K+ channels. Lazdunski M. Cell Calcium; 1983 Dec 10; 4(5-6):421-8. PubMed ID: 6323004 [No Abstract] [Full Text] [Related]
13. Properties of the apamin-sensitive Ca2+-activated K+ channel in PC12 pheochromocytoma cells which hyper-produce the apamin receptor. Schmid-Antomarchi H, Hugues M, Lazdunski M. J Biol Chem; 1986 Jul 05; 261(19):8633-7. PubMed ID: 2424901 [Abstract] [Full Text] [Related]
14. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M. Proc Natl Acad Sci U S A; 1982 Feb 05; 79(4):1308-12. PubMed ID: 6122211 [Abstract] [Full Text] [Related]
16. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig. Sánchez D, Ribas J. J Physiol; 1991 Feb 05; 440():167-87. PubMed ID: 1804959 [Abstract] [Full Text] [Related]
17. Identification of a protein component of the Ca2+-dependent K+ channel by affinity labelling with apamin. Hugues M, Schmid H, Lazdunski M. Biochem Biophys Res Commun; 1982 Aug 31; 107(4):1577-82. PubMed ID: 6291536 [No Abstract] [Full Text] [Related]
18. Inward membrane currents and electrophysiological responses to GnRH in ovine gonadotropes. Heyward PM, Chen C, Clarke IJ. Neuroendocrinology; 1995 Jun 31; 61(6):609-21. PubMed ID: 7544876 [Abstract] [Full Text] [Related]
19. [Effect of the neurotoxin apamin on ion currents in membranes of heart fibers]. Filippov AK, Skatova GE, Porotikov VI, Orlov BN, Asafova NN. Biofizika; 1988 Jun 31; 33(1):109-12. PubMed ID: 2453221 [Abstract] [Full Text] [Related]
20. Effects of apamin, quinine and neuromuscular blockers on calcium-activated potassium channels in guinea-pig hepatocytes. Cook NS, Haylett DG. J Physiol; 1985 Jan 31; 358():373-94. PubMed ID: 2580085 [Abstract] [Full Text] [Related] Page: [Next] [New Search]