These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Catalytic oxidation of benzene with ozone over Mn/KIT-6. Park JH, Kim JM, Jurng J, Bae GN, Park SH, Kim SC, Jeon JK, Park YK. J Nanosci Nanotechnol; 2013 Jan; 13(1):423-6. PubMed ID: 23646749 [Abstract] [Full Text] [Related]
4. Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: Effect of the structure of zeolites support. Yao X, Zhang J, Liang X, Long C. Chemosphere; 2018 Oct; 208():922-930. PubMed ID: 30068036 [Abstract] [Full Text] [Related]
5. Synthesis of Ordered Mesoporous Manganese Oxides with Various Oxidation States. Park GO, Shon JK, Kim YH, Kim JM. J Nanosci Nanotechnol; 2015 Mar; 15(3):2441-5. PubMed ID: 26413684 [Abstract] [Full Text] [Related]
7. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Jiao F, Frei H. Chem Commun (Camb); 2010 May 07; 46(17):2920-2. PubMed ID: 20386823 [Abstract] [Full Text] [Related]
8. Catalytic Oxidation of NO over MnOx-CeO₂ and MnOx-TiO₂ Catalysts. Zeng X, Huo X, Zhu T, Hong X, Sun Y. Molecules; 2016 Nov 14; 21(11):. PubMed ID: 27854237 [Abstract] [Full Text] [Related]
9. Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions. Saputra E, Zhang H, Liu Q, Sun H, Wang S. Chemosphere; 2016 Sep 14; 159():351-358. PubMed ID: 27318450 [Abstract] [Full Text] [Related]
11. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3. Lee SM, Park KH, Kim SS, Kwon DW, Hong SC. J Air Waste Manag Assoc; 2012 Sep 14; 62(9):1085-92. PubMed ID: 23019822 [Abstract] [Full Text] [Related]
12. Catalytic characteristics of MnO2 nanostructures for the O2 reduction process. Kalubarme RS, Cho MS, Yun KS, Kim TS, Park CJ. Nanotechnology; 2011 Sep 30; 22(39):395402. PubMed ID: 21896976 [Abstract] [Full Text] [Related]
14. Crossover between anti- and pro-oxidant activities of different manganese oxide nanoparticles and their biological implications. Jiang X, Gray P, Patel M, Zheng J, Yin JJ. J Mater Chem B; 2020 Feb 14; 8(6):1191-1201. PubMed ID: 31967629 [Abstract] [Full Text] [Related]
16. Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. Ma C, Mu Z, He C, Li P, Li J, Hao Z. J Environ Sci (China); 2011 Feb 14; 23(12):2078-86. PubMed ID: 22432341 [Abstract] [Full Text] [Related]
18. On the Origin of the Improvement of Electrodeposited MnOx Films in Water Oxidation Catalysis Induced by Heat Treatment. Khan M, Xiao J, Zhou F, Yablonskikh M, MacFarlane DR, Spiccia L, Aziz EF. ChemSusChem; 2015 Jun 08; 8(11):1980-5. PubMed ID: 25940315 [Abstract] [Full Text] [Related]
19. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y. Environ Sci Technol; 2012 Apr 03; 46(7):4034-41. PubMed ID: 22413904 [Abstract] [Full Text] [Related]
20. Catalytic decomposition of N2O on ordered crystalline metal oxides. Ma Z, Ren Y, Lu Y, Bruce PG. J Nanosci Nanotechnol; 2013 Jul 03; 13(7):5093-103. PubMed ID: 23901535 [Abstract] [Full Text] [Related] Page: [Next] [New Search]