These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
230 related items for PubMed ID: 24248916
1. Statistics and geometry of orientation selectivity in primary visual cortex. Sadeh S, Rotter S. Biol Cybern; 2014 Oct; 108(5):631-53. PubMed ID: 24248916 [Abstract] [Full Text] [Related]
2. Retinal origin of orientation maps in visual cortex. Paik SB, Ringach DL. Nat Neurosci; 2011 May 29; 14(7):919-25. PubMed ID: 21623365 [Abstract] [Full Text] [Related]
3. Sparseness of coding in area 17 of the cat visual cortex: a comparison between pinwheel centres and orientation domains. Jayakumar J, Hu D, Vidyasagar TR. Neuroscience; 2012 Dec 06; 225():55-64. PubMed ID: 22963796 [Abstract] [Full Text] [Related]
4. Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Jin J, Wang Y, Swadlow HA, Alonso JM. Nat Neurosci; 2011 Feb 06; 14(2):232-8. PubMed ID: 21217765 [Abstract] [Full Text] [Related]
5. Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. Crair MC, Ruthazer ES, Gillespie DC, Stryker MP. J Neurophysiol; 1997 Jun 06; 77(6):3381-5. PubMed ID: 9212282 [Abstract] [Full Text] [Related]
6. Origins of feature selectivities and maps in the mammalian primary visual cortex. Vidyasagar TR, Eysel UT. Trends Neurosci; 2015 Aug 06; 38(8):475-85. PubMed ID: 26209463 [Abstract] [Full Text] [Related]
7. Anatomical evidence of subcortical contributions to the orientation selectivity and columns of the cat's primary visual cortex. Zhan X, Shou T. Neurosci Lett; 2002 May 24; 324(3):247-51. PubMed ID: 12009533 [Abstract] [Full Text] [Related]
9. A model for the origin and development of visual orientation selectivity. Nguyen G, Freeman AW. PLoS Comput Biol; 2019 Jul 24; 15(7):e1007254. PubMed ID: 31356590 [Abstract] [Full Text] [Related]
10. Highly ordered arrangement of single neurons in orientation pinwheels. Ohki K, Chung S, Kara P, Hübener M, Bonhoeffer T, Reid RC. Nature; 2006 Aug 24; 442(7105):925-8. PubMed ID: 16906137 [Abstract] [Full Text] [Related]
11. Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets. Rao SC, Toth LJ, Sur M. J Comp Neurol; 1997 Oct 27; 387(3):358-70. PubMed ID: 9335420 [Abstract] [Full Text] [Related]
12. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex. Nakagama H, Tani T, Tanaka S. Neurosci Res; 2006 Aug 27; 55(4):370-82. PubMed ID: 16780978 [Abstract] [Full Text] [Related]
13. Link between orientation and retinotopic maps in primary visual cortex. Paik SB, Ringach DL. Proc Natl Acad Sci U S A; 2012 May 01; 109(18):7091-6. PubMed ID: 22509015 [Abstract] [Full Text] [Related]
14. The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization. Bonhoeffer T, Grinvald A. J Neurosci; 1993 Oct 01; 13(10):4157-80. PubMed ID: 8410182 [Abstract] [Full Text] [Related]
15. GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on direction selectivity. Crook JM, Kisvárday ZF, Eysel UT. J Neurophysiol; 1996 May 01; 75(5):2071-88. PubMed ID: 8734604 [Abstract] [Full Text] [Related]
16. Principles underlying sensory map topography in primary visual cortex. Kremkow J, Jin J, Wang Y, Alonso JM. Nature; 2016 May 05; 533(7601):52-7. PubMed ID: 27120164 [Abstract] [Full Text] [Related]
17. Pinwheel patterns give rise to the direction selectivity of complex cells in the primary visual cortex. Yao X, Jin L, Hu H. Brain Res; 2007 Sep 19; 1170():140-6. PubMed ID: 17719018 [Abstract] [Full Text] [Related]
18. Functional organization of envelope-responsive neurons in early visual cortex: organization of carrier tuning properties. Li G, Baker CL. J Neurosci; 2012 May 30; 32(22):7538-49. PubMed ID: 22649232 [Abstract] [Full Text] [Related]
19. Parallel development of orientation maps and spatial frequency selectivity in cat visual cortex. Tani T, Ribot J, O'Hashi K, Tanaka S. Eur J Neurosci; 2012 Jan 30; 35(1):44-55. PubMed ID: 22211742 [Abstract] [Full Text] [Related]
20. Optical imaging of intrinsic signals as a tool to visualize the functional architecture of adult and developing visual cortex. Bonhoeffer T. Arzneimittelforschung; 1995 Mar 30; 45(3A):351-6. PubMed ID: 7763325 [Abstract] [Full Text] [Related] Page: [Next] [New Search]