These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 2424914

  • 1. Molecular characterization of the in situ red cell membrane calcium pump by limited proteolysis.
    Sarkadi B, Enyedi A, Földes-Papp Z, Gárdos G.
    J Biol Chem; 1986 Jul 15; 261(20):9552-7. PubMed ID: 2424914
    [Abstract] [Full Text] [Related]

  • 2. Demonstration of two distinct calcium pumps in human platelet membrane vesicles.
    Enyedi A, Sarkadi B, Földes-Papp Z, Monostory S, Gárdos G.
    J Biol Chem; 1986 Jul 15; 261(20):9558-63. PubMed ID: 2424915
    [Abstract] [Full Text] [Related]

  • 3. Functional domains of the in situ red cell membrane calcium pump revealed by proteolysis and monoclonal antibodies. Possible sites for regulation by calpain and acidic lipids.
    Papp B, Sarkadi B, Enyedi A, Caride AJ, Penniston JT, Gardos G.
    J Biol Chem; 1989 Mar 15; 264(8):4577-82. PubMed ID: 2538449
    [Abstract] [Full Text] [Related]

  • 4. Phospholipid protection against proteolysis of D-beta-hydroxybutyrate dehydrogenase, a lecithin-requiring enzyme.
    Maurer A, McIntyre JO, Churchill S, Fleischer S.
    J Biol Chem; 1985 Feb 10; 260(3):1661-9. PubMed ID: 3881438
    [Abstract] [Full Text] [Related]

  • 5. Conformational changes of the in situ red cell membrane calcium pump affect its proteolysis.
    Sarkadi B, Enyedi A, Gárdos G.
    Biochim Biophys Acta; 1987 May 12; 899(1):129-33. PubMed ID: 2952170
    [Abstract] [Full Text] [Related]

  • 6. The maximal velocity and the calcium affinity of the red cell calcium pump may be regulated independently.
    Enyedi A, Flura M, Sarkadi B, Gardos G, Carafoli E.
    J Biol Chem; 1987 May 05; 262(13):6425-30. PubMed ID: 3032968
    [Abstract] [Full Text] [Related]

  • 7. ATPase activity and Ca2+ transport by reconstituted tryptic fragments of the Ca2+ pump of the erythrocyte plasma membrane.
    Benaim G, Clark A, Carafoli E.
    Cell Calcium; 1986 Jun 05; 7(3):175-86. PubMed ID: 2424611
    [Abstract] [Full Text] [Related]

  • 8. Proteolytic activation of calmodulin-dependent cyclic nucleotide phosphodiesterase.
    Kincaid RL, Stith-Coleman IE, Vaughan M.
    J Biol Chem; 1985 Jul 25; 260(15):9009-15. PubMed ID: 2991233
    [Abstract] [Full Text] [Related]

  • 9. A calmodulin activated Ca2+-dependent K+ channel in human erythrocyte membrane inside-out vesicles.
    Pape L, Kristensen BI.
    Biochim Biophys Acta; 1984 Feb 29; 770(1):1-6. PubMed ID: 6320879
    [Abstract] [Full Text] [Related]

  • 10. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. I. Regulation of the Ca2+ pump by calmodulin.
    Waisman DM, Gimble JM, Goodman DB, Rasmussen H.
    J Biol Chem; 1981 Jan 10; 256(1):409-14. PubMed ID: 6108954
    [Abstract] [Full Text] [Related]

  • 11. Proteolytic digestion of band 3 from bovine erythrocyte membranes in membrane-bound and solubilized states.
    Makino S, Moriyama R, Kitahara T, Koga S.
    J Biochem; 1984 Apr 10; 95(4):1019-29. PubMed ID: 6746585
    [Abstract] [Full Text] [Related]

  • 12. The susceptibility of muscle phosphorylases a and b to digestion by a neutral proteinase from rat intestinal muscle. Comparison with the effects produced by pancreatic trypsin and chymotrypsin.
    Carney IT, Beynon RJ, Kay J, Birket N.
    Biochem J; 1978 Oct 01; 175(1):105-13. PubMed ID: 736888
    [Abstract] [Full Text] [Related]

  • 13. Phosphorylation of the Ca2+ pump intermediate in intact red cells, isolated membranes and inside-out vesicles.
    Szász I, Hasitz M, Sarkadi B, Gárdos G.
    Mol Cell Biochem; 1978 Dec 22; 22(2-3):147-52. PubMed ID: 745597
    [Abstract] [Full Text] [Related]

  • 14. Calcium transport by red blood cell membranes from young and adult cattle.
    Zimmermann A, Schatzmann HJ.
    Experientia; 1985 Jun 15; 41(6):743-5. PubMed ID: 2408915
    [Abstract] [Full Text] [Related]

  • 15. Sodium- and adenosine-triphosphate-dependent calcium movements in membrane vesicles prepared from dog erythrocytes.
    Ortiz OE, Sjodin RA.
    J Physiol; 1984 Sep 15; 354():287-301. PubMed ID: 6090650
    [Abstract] [Full Text] [Related]

  • 16. Trypsin activation of the red cell Ca2+-pump ATPase is calcium-sensitive.
    Rossi JP, Schatzmann HJ.
    Cell Calcium; 1982 Dec 15; 3(6):583-90. PubMed ID: 6131745
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Topology of the erythrocyte Ca2+ pump. A monoclonal antibody against the almost inaccessible extracellular face.
    Caride AJ, Gorski JP, Penniston JT.
    Biochem J; 1988 Oct 15; 255(2):663-70. PubMed ID: 3202839
    [Abstract] [Full Text] [Related]

  • 19. Activation of the Ca2+-ATPase of human erythrocyte membrane by an endogenous Ca2+-dependent neutral protease.
    Wang KK, Villalobo A, Roufogalis BD.
    Arch Biochem Biophys; 1988 Feb 01; 260(2):696-704. PubMed ID: 2829740
    [Abstract] [Full Text] [Related]

  • 20. Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles. Generation of a low resolution model of phospholamban structure.
    Wegener AD, Simmerman HK, Liepnieks J, Jones LR.
    J Biol Chem; 1986 Apr 15; 261(11):5154-9. PubMed ID: 3007493
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.