These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
190 related items for PubMed ID: 2425414
1. Mast cells induced in vitro by interleukin 3 from native murine thymus cells. Kawanishi H, Medicus RG, Palaszynski EW. Scand J Immunol; 1986 Jul; 24(1):29-38. PubMed ID: 2425414 [Abstract] [Full Text] [Related]
2. In vitro induction and characterization of mast cells from murine Peyer's patches. Kawanishi H, Ihle JM. Scand J Immunol; 1987 Feb; 25(2):109-20. PubMed ID: 2434985 [Abstract] [Full Text] [Related]
3. Role of IgE as a mast cell development co-factor in the differentiation of murine gut-associated mast cells in vitro. Kawanishi H. Eur J Immunol; 1986 Jun; 16(6):689-92. PubMed ID: 2941306 [Abstract] [Full Text] [Related]
4. Kinetics of the appearance of Fc epsilon RI-bearing cells in interleukin-3-dependent mouse bone marrow cultures: correlation with histamine content and mast cell maturation. Rottem M, Barbieri S, Kinet JP, Metcalfe DD. Blood; 1992 Feb 15; 79(4):972-80. PubMed ID: 1531309 [Abstract] [Full Text] [Related]
5. Stem cell factor and interleukin-4 induce murine bone marrow cells to develop into mast cells with connective tissue type characteristics in vitro. Karimi K, Redegeld FA, Heijdra B, Nijkamp FP. Exp Hematol; 1999 Apr 15; 27(4):654-62. PubMed ID: 10210323 [Abstract] [Full Text] [Related]
6. Interleukin 3: A differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. Razin E, Ihle JN, Seldin D, Mencia-Huerta JM, Katz HR, LeBlanc PA, Hein A, Caulfield JP, Austen KF, Stevens RL. J Immunol; 1984 Mar 15; 132(3):1479-86. PubMed ID: 6198393 [Abstract] [Full Text] [Related]
7. Long-term cultured mouse mast cells: ultrastructure, histamine and leukotriene levels. Haisa S, Chang HS, Bewtra AK, Hiratani M, Tamura N, Bewtra C, Townley RG. Int Arch Allergy Immunol; 1992 Mar 15; 98(2):169-77. PubMed ID: 1643442 [Abstract] [Full Text] [Related]
8. The relative roles of interleukins 1, 2, and 3 in the regulation of T cell differentiation. Ihle JN, Keller J. Kroc Found Ser; 1984 Mar 15; 18():399-421. PubMed ID: 6442348 [Abstract] [Full Text] [Related]
9. Murine KIT+ lineage- bone marrow progenitors express Fc gamma-RII but do not express Fc epsilon-RI until mast cell granule formation. Lantz CS, Huff TF. J Immunol; 1995 Jan 01; 154(1):355-62. PubMed ID: 7527815 [Abstract] [Full Text] [Related]
10. Cutaneous mast cell depletion and recovery in murine graft-vs-host disease. Choi KL, Giorno R, Claman HN. J Immunol; 1987 Jun 15; 138(12):4093-101. PubMed ID: 2953799 [Abstract] [Full Text] [Related]
11. Mouse splenic and bone marrow cell populations that express high-affinity Fc epsilon receptors and produce interleukin 4 are highly enriched in basophils. Seder RA, Paul WE, Dvorak AM, Sharkis SJ, Kagey-Sobotka A, Niv Y, Finkelman FD, Barbieri SA, Galli SJ, Plaut M. Proc Natl Acad Sci U S A; 1991 Apr 01; 88(7):2835-9. PubMed ID: 1826367 [Abstract] [Full Text] [Related]
12. Biochemical and phenotypic characterization of human basophilic cells derived from dispersed fetal liver with murine T cell factors. Seldin DC, Caulfield JP, Hein A, Osathanondh R, Nabel G, Schlossman SF, Stevens RL, Austen KF. J Immunol; 1986 Mar 15; 136(6):2222-30. PubMed ID: 2419426 [Abstract] [Full Text] [Related]
13. Proliferation and differentiation in culture of mast cell progenitors derived from mast cell-deficient mice of genotype W/Wv. Suda T, Suda J, Spicer SS, Ogawa M. J Cell Physiol; 1985 Feb 15; 122(2):187-92. PubMed ID: 3155752 [Abstract] [Full Text] [Related]
14. Simultaneous in situ detection of IgE receptors and cytoplasmic granules in murine cutaneous mast cells. Giorno R, Choi KL, Claman HN. J Immunol Methods; 1987 May 20; 99(2):163-6. PubMed ID: 2953820 [Abstract] [Full Text] [Related]
15. [Experimental study on substance P in the regulation of degranulation of cultured murine mast cells]. Cheng FL, Li QT, Zhao CQ, An YF, Qi XP. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Sep 07; 51(9):675-680. PubMed ID: 27666706 [Abstract] [Full Text] [Related]
16. In vitro production of granular T cells and mast cells by use of different conditioned media. Ultrastructural and functional analysis. Courtoy R, Schaaf-Lafontaine N, Degiovanni G, Boniver J. Scand J Immunol; 1983 Aug 07; 18(2):101-11. PubMed ID: 6224290 [Abstract] [Full Text] [Related]
17. Mouse bone marrow-derived mast cells cocultured with fibroblasts. Morphology and stimulation-induced release of histamine, leukotriene B4, leukotriene C4, and prostaglandin D2. Levi-Schaffer F, Dayton ET, Austen KF, Hein A, Caulfield JP, Gravallese PM, Liu FT, Stevens RL. J Immunol; 1987 Nov 15; 139(10):3431-41. PubMed ID: 2445814 [Abstract] [Full Text] [Related]
18. Long-term in vitro culture of murine mast cells. I. Description of a growth factor-dependent culture technique. Tertian G, Yung YP, Guy-Grand D, Moore MA. J Immunol; 1981 Aug 15; 127(2):788-94. PubMed ID: 7019332 [Abstract] [Full Text] [Related]
19. The mast cell-committed progenitor. I. Description of a cell capable of IL-3-independent proliferation and differentiation without contact with fibroblasts. Jarboe DL, Marshall JS, Randolph TR, Kukolja A, Huff TF. J Immunol; 1989 Apr 01; 142(7):2405-17. PubMed ID: 2784462 [Abstract] [Full Text] [Related]
20. A self-renewing, bipotential erythroid/mast cell progenitor in continuous cultures of normal murine bone marrow. Wendling F, Shreeve M, McLeod D, Axelrad A. J Cell Physiol; 1985 Oct 01; 125(1):10-8. PubMed ID: 2931443 [Abstract] [Full Text] [Related] Page: [Next] [New Search]