These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
397 related items for PubMed ID: 24259291
1. Post-heading heat stress and yield impact in winter wheat of China. Liu B, Liu L, Tian L, Cao W, Zhu Y, Asseng S. Glob Chang Biol; 2014 Feb; 20(2):372-81. PubMed ID: 24259291 [Abstract] [Full Text] [Related]
2. Post-Heading Heat Stress in Rice of South China during 1981-2010. Shi P, Tang L, Wang L, Sun T, Liu L, Cao W, Zhu Y. PLoS One; 2015 Feb; 10(6):e0130642. PubMed ID: 26110263 [Abstract] [Full Text] [Related]
3. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE, Børgesen CD, Elsgaard L, Palosuo T, Rötter RP, Skjelvåg AO, Peltonen-Sainio P, Börjesson T, Trnka M, Ewert F, Siebert S, Brisson N, Eitzinger J, van Asselt ED, Oberforster M, van der Fels-Klerx HJ. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012 Feb; 29(10):1527-42. PubMed ID: 22934894 [Abstract] [Full Text] [Related]
4. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing. Duncan JM, Dash J, Atkinson PM. Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864 [Abstract] [Full Text] [Related]
5. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. Mishra A, Singh R, Raghuwanshi NS, Chatterjee C, Froebrich J. Sci Total Environ; 2013 Dec 01; 468-469 Suppl():S132-8. PubMed ID: 23800620 [Abstract] [Full Text] [Related]
6. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Liu B, Asseng S, Liu L, Tang L, Cao W, Zhu Y. Glob Chang Biol; 2016 May 01; 22(5):1890-903. PubMed ID: 26725507 [Abstract] [Full Text] [Related]
7. The shifting influence of drought and heat stress for crops in northeast Australia. Lobell DB, Hammer GL, Chenu K, Zheng B, McLean G, Chapman SC. Glob Chang Biol; 2015 Nov 01; 21(11):4115-27. PubMed ID: 26152643 [Abstract] [Full Text] [Related]
8. Does cyclic water stress damage wheat yield more than a single stress? Ding J, Huang Z, Zhu M, Li C, Zhu X, Guo W. PLoS One; 2018 Nov 01; 13(4):e0195535. PubMed ID: 29630647 [Abstract] [Full Text] [Related]
9. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China. Zhao J, Pu F, Li Y, Xu J, Li N, Zhang Y, Guo J, Pan Z. PLoS One; 2017 Nov 01; 12(11):e0185690. PubMed ID: 29099842 [Abstract] [Full Text] [Related]
10. [Characteristics and simulation of heat and CO2 fluxes over a typical cropland during the winter wheat growing in the North China Plain]. Yuan ZJ, Shen YJ, Chu YM, Qi YQ. Huan Jing Ke Xue; 2010 Jan 01; 31(1):41-8. PubMed ID: 20329514 [Abstract] [Full Text] [Related]
11. Spatial and interdecadal differences in climatic suitability for winter wheat in China from 1985 to 2014. Li KX, Zheng F. Int J Biometeorol; 2022 Oct 01; 66(10):2091-2104. PubMed ID: 35933441 [Abstract] [Full Text] [Related]
12. Estimating evapotranspiration and drought dynamics of winter wheat under climate change: A case study in Huang-Huai-Hai region, China. Zhao J, Yang J, Huang R, Xie H, Qin X, Hu Y. Sci Total Environ; 2024 Nov 01; 949():175114. PubMed ID: 39084384 [Abstract] [Full Text] [Related]
13. [Geographic distribution of winter wheat yield loss risk and its classification in North China]. Xue C, Huo Z, Li S, Zhuang L, Wang S, Hou T, Ye C. Ying Yong Sheng Tai Xue Bao; 2005 Apr 01; 16(4):620-5. PubMed ID: 16011155 [Abstract] [Full Text] [Related]
14. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. García GA, Dreccer MF, Miralles DJ, Serrago RA. Glob Chang Biol; 2015 Nov 01; 21(11):4153-64. PubMed ID: 26111197 [Abstract] [Full Text] [Related]
15. [Characteristics of seasonal drought and its adaptation in southern China under the background of global climate change. VI. Optimized layout of cropping system for preventing and avoiding drought disaster]. Sui Y, Huang WH, Yang XG, Li MS. Ying Yong Sheng Tai Xue Bao; 2013 Nov 01; 24(11):3192-8. PubMed ID: 24564149 [Abstract] [Full Text] [Related]
16. Responses of Winter Wheat Yield and Water Use Efficiency to Irrigation Frequency and Planting Pattern. Bian C, Ma C, Liu X, Gao C, Liu Q, Yan Z, Ren Y, Li Q. PLoS One; 2016 Nov 01; 11(5):e0154673. PubMed ID: 27171202 [Abstract] [Full Text] [Related]
17. [Influence of light and temperature factors on biomass accumulation of winter wheat in field]. Ma PL, Pu JY, Zhao CY, Wang WT. Ying Yong Sheng Tai Xue Bao; 2010 May 01; 21(5):1270-6. PubMed ID: 20707112 [Abstract] [Full Text] [Related]
18. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. Stratonovitch P, Semenov MA. J Exp Bot; 2015 Jun 01; 66(12):3599-609. PubMed ID: 25750425 [Abstract] [Full Text] [Related]
19. Improved cyber-physical system captured post-flowering high night temperature impact on yield and quality of field grown wheat. Hein NT, Bheemanahalli R, Wagner D, Vennapusa AR, Bustamante C, Ostmeyer T, Pokharel M, Chiluwal A, Fu J, Srikanthan DS, Neilsen ML, Jagadish SVK. Sci Rep; 2020 Dec 17; 10(1):22213. PubMed ID: 33335185 [Abstract] [Full Text] [Related]
20. The variation of the water deficit during the winter wheat growing season and its impact on crop yield in the North China Plain. Wu J, Liu M, Lü A, He B. Int J Biometeorol; 2014 Nov 17; 58(9):1951-60. PubMed ID: 24531705 [Abstract] [Full Text] [Related] Page: [Next] [New Search]