These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
103 related items for PubMed ID: 24266868
1. Deglycosylation of isoflavones in isoflavone-rich soy germ flour by Aspergillus oryzae KACC 40247. Lee SH, Seo MH, Oh DK. J Agric Food Chem; 2013 Dec 11; 61(49):12101-10. PubMed ID: 24266868 [Abstract] [Full Text] [Related]
2. Production of 8-hydroxydaidzein from soybean extract by Aspergillus oryzae KACC 40247. Seo MH, Kim BN, Kim KR, Lee KW, Lee CH, Oh DK. Biosci Biotechnol Biochem; 2013 Dec 11; 77(6):1245-50. PubMed ID: 23748754 [Abstract] [Full Text] [Related]
3. Optimisation of soy flour fermentation parameters to produce β-glucosidase for bioconversion into aglycones. Handa CL, Couto UR, Vicensoti AH, Georgetti SR, Ida EI. Food Chem; 2014 Dec 11; 152():56-65. PubMed ID: 24444906 [Abstract] [Full Text] [Related]
4. Optimizing time and temperature of enzymatic conversion of isoflavone glucosides to aglycones in soy germ flour. Tipkanon S, Chompreeda P, Haruthaithanasan V, Suwonsichon T, Prinyawiwatkul W, Xu Z. J Agric Food Chem; 2010 Nov 10; 58(21):11340-5. PubMed ID: 20942463 [Abstract] [Full Text] [Related]
5. Simultaneous enhancement of free isoflavone content and antioxidant potential of soybean by fermentation with Aspergillus oryzae. Hwan Nam D, Jung Kim H, Sun Lim J, Heon Kim K, Park CS, Hwan Kim J, Lim J, Young Kwon D, Kim IH, Kim JS. J Food Sci; 2011 Oct 10; 76(8):H194-200. PubMed ID: 22417591 [Abstract] [Full Text] [Related]
6. High production of succinyl isoflavone glycosides by Bacillus licheniformis ZSP01 resting cells in aqueous miscible organic medium. Zhang S, Chen G, Chu J, Wu B, He B. Biotechnol Appl Biochem; 2015 Oct 10; 62(2):255-9. PubMed ID: 24919721 [Abstract] [Full Text] [Related]
7. Multi-response optimisation of the extraction solvent system for phenolics and antioxidant activities from fermented soy flour using a simplex-centroid design. Handa CL, de Lima FS, Guelfi MF, Georgetti SR, Ida EI. Food Chem; 2016 Apr 15; 197(Pt A):175-84. PubMed ID: 26616938 [Abstract] [Full Text] [Related]
8. Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. Klejdus B, Mikelová R, Petrlová J, Potesil D, Adam V, Stiborová M, Hodek P, Vacek J, Kizek R, Kubán V. J Agric Food Chem; 2005 Jul 27; 53(15):5848-52. PubMed ID: 16028964 [Abstract] [Full Text] [Related]
9. A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18. Kuo LC, Wu RY, Lee KT. Appl Microbiol Biotechnol; 2012 Jun 27; 94(5):1181-8. PubMed ID: 22350317 [Abstract] [Full Text] [Related]
10. Acceleration of Aglycone Isoflavone and γ-Aminobutyric Acid Production from Doenjang Using Whole-Cell Biocatalysis Accompanied by Protease Treatment. Li Y, Ku S, Park MS, Li Z, Ji GE. J Microbiol Biotechnol; 2017 Nov 28; 27(11):1952-1960. PubMed ID: 28910863 [Abstract] [Full Text] [Related]
11. Changes in isoflavone profiles of soybean treated with gamma irradiation. Aguiar CL, Baptista AS, Walder JM, Tsai SM, Carrão-Panizzi MC, Kitajima EW. Int J Food Sci Nutr; 2009 Aug 28; 60(5):387-94. PubMed ID: 22519677 [Abstract] [Full Text] [Related]
12. Agmatine Production by Aspergillus oryzae Is Elevated by Low pH during Solid-State Cultivation. Akasaka N, Kato S, Kato S, Hidese R, Wagu Y, Sakoda H, Fujiwara S. Appl Environ Microbiol; 2018 Aug 01; 84(15):. PubMed ID: 29802188 [Abstract] [Full Text] [Related]
13. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Kuo LC, Cheng WY, Wu RY, Huang CJ, Lee KT. Appl Microbiol Biotechnol; 2006 Nov 01; 73(2):314-20. PubMed ID: 16715232 [Abstract] [Full Text] [Related]
14. Effects of germination and osmopriming treatment on enhancement of isoflavone contents in various soybean cultivars and cheonggukjang (fermented unsalted soybean paste). Jeong PH, Shin DH, Kim YS. J Food Sci; 2008 Oct 01; 73(8):H187-94. PubMed ID: 19019114 [Abstract] [Full Text] [Related]
15. Pressurized water extraction of isoflavones by experimental design from soybean flour and Soybean Protein Isolate. Moras B, Rey S, Vilarem G, Pontalier PY. Food Chem; 2017 Jan 01; 214():9-15. PubMed ID: 27507441 [Abstract] [Full Text] [Related]
16. Targeted metabolomics for Aspergillus oryzae-mediated biotransformation of soybean isoflavones, showing variations in primary metabolites. Lee S, Seo MH, Oh DK, Lee CH. Biosci Biotechnol Biochem; 2014 Jan 01; 78(1):167-74. PubMed ID: 25036500 [Abstract] [Full Text] [Related]
17. Effect of Aspergillus oryzae-challenged germination on soybean isoflavone content and antioxidant activity. Jeon HY, Seo DB, Shin HJ, Lee SJ. J Agric Food Chem; 2012 Mar 21; 60(11):2807-14. PubMed ID: 22409158 [Abstract] [Full Text] [Related]
18. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122 β-glucosidase enzyme. Abdella A, El-Baz AF, Ibrahim IA, Mahrous EE, Yang ST. Nat Prod Res; 2018 Oct 21; 32(20):2382-2391. PubMed ID: 29224366 [Abstract] [Full Text] [Related]
19. Parameters of the fermentation of soybean flour by Monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity. Handa CL, de Lima FS, Guelfi MFG, Fernandes MDS, Georgetti SR, Ida EI. Food Chem; 2019 Jan 15; 271():274-283. PubMed ID: 30236677 [Abstract] [Full Text] [Related]
20. Effects of surfactant and salt species in reverse micellar forward extraction efficiency of isoflavones with enriched protein from soy flour. Zhao X, Wei Z, Du F, Zhu J. Appl Biochem Biotechnol; 2010 Nov 15; 162(7):2087-97. PubMed ID: 20473722 [Abstract] [Full Text] [Related] Page: [Next] [New Search]