These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
169 related items for PubMed ID: 24267033
1. Prediction of essential proteins based on gene expression programming. Zhong J, Wang J, Peng W, Zhang Z, Pan Y. BMC Genomics; 2013; 14 Suppl 4(Suppl 4):S7. PubMed ID: 24267033 [Abstract] [Full Text] [Related]
2. Prediction of essential proteins based on subcellular localization and gene expression correlation. Fan Y, Tang X, Hu X, Wu W, Ping Q. BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):470. PubMed ID: 29219067 [Abstract] [Full Text] [Related]
3. Machine learning approach to gene essentiality prediction: a review. Aromolaran O, Aromolaran D, Isewon I, Oyelade J. Brief Bioinform; 2021 Sep 02; 22(5):. PubMed ID: 33842944 [Abstract] [Full Text] [Related]
4. DeepHE: Accurately predicting human essential genes based on deep learning. Zhang X, Xiao W, Xiao W. PLoS Comput Biol; 2020 Sep 02; 16(9):e1008229. PubMed ID: 32936825 [Abstract] [Full Text] [Related]
5. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. You ZH, Yin Z, Han K, Huang DS, Zhou X. BMC Bioinformatics; 2010 Jun 24; 11():343. PubMed ID: 20573270 [Abstract] [Full Text] [Related]
6. Analysis and identification of essential genes in humans using topological properties and biological information. Yang L, Wang J, Wang H, Lv Y, Zuo Y, Li X, Jiang W. Gene; 2014 Nov 10; 551(2):138-51. PubMed ID: 25168893 [Abstract] [Full Text] [Related]
7. A novel method to predict essential proteins based on tensor and HITS algorithm. Zhang Z, Luo Y, Hu S, Li X, Wang L, Zhao B. Hum Genomics; 2020 Apr 06; 14(1):14. PubMed ID: 32252824 [Abstract] [Full Text] [Related]
8. UDoNC: An Algorithm for Identifying Essential Proteins Based on Protein Domains and Protein-Protein Interaction Networks. Peng W, Wang J, Cheng Y, Lu Y, Wu F, Pan Y. IEEE/ACM Trans Comput Biol Bioinform; 2015 Apr 06; 12(2):276-88. PubMed ID: 26357216 [Abstract] [Full Text] [Related]
9. Predicting essential proteins by integrating orthology, gene expressions, and PPI networks. Zhang X, Xiao W, Hu X. PLoS One; 2018 Apr 06; 13(4):e0195410. PubMed ID: 29634727 [Abstract] [Full Text] [Related]
10. Prediction of essential proteins based on overlapping essential modules. Zhao B, Wang J, Li M, Wu FX, Pan Y. IEEE Trans Nanobioscience; 2014 Dec 06; 13(4):415-24. PubMed ID: 25122840 [Abstract] [Full Text] [Related]
11. A new method for predicting essential proteins based on participation degree in protein complex and subgraph density. Lei X, Yang X. PLoS One; 2018 Dec 06; 13(6):e0198998. PubMed ID: 29894517 [Abstract] [Full Text] [Related]
12. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes. Luo J, Qi Y. PLoS One; 2015 Dec 06; 10(6):e0131418. PubMed ID: 26125187 [Abstract] [Full Text] [Related]
13. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. Acencio ML, Lemke N. BMC Bioinformatics; 2009 Sep 16; 10():290. PubMed ID: 19758426 [Abstract] [Full Text] [Related]
14. A new computational strategy for predicting essential genes. Cheng J, Wu W, Zhang Y, Li X, Jiang X, Wei G, Tao S. BMC Genomics; 2013 Dec 21; 14():910. PubMed ID: 24359534 [Abstract] [Full Text] [Related]
15. A new computational strategy for identifying essential proteins based on network topological properties and biological information. Qin C, Sun Y, Dong Y. PLoS One; 2017 Dec 21; 12(7):e0182031. PubMed ID: 28753682 [Abstract] [Full Text] [Related]
16. Training set selection for the prediction of essential genes. Cheng J, Xu Z, Wu W, Zhao L, Li X, Liu Y, Tao S. PLoS One; 2014 Dec 21; 9(1):e86805. PubMed ID: 24466248 [Abstract] [Full Text] [Related]
17. Prediction of essential genes in prokaryote based on artificial neural network. Xu L, Guo Z, Liu X. Genes Genomics; 2020 Jan 21; 42(1):97-106. PubMed ID: 31736009 [Abstract] [Full Text] [Related]
18. A deep learning framework for identifying essential proteins based on multiple biological information. Yue Y, Ye C, Peng PY, Zhai HX, Ahmad I, Xia C, Wu YZ, Zhang YH. BMC Bioinformatics; 2022 Aug 04; 23(1):318. PubMed ID: 35927611 [Abstract] [Full Text] [Related]
19. Selection of key sequence-based features for prediction of essential genes in 31 diverse bacterial species. Liu X, Wang BJ, Xu L, Tang HL, Xu GQ. PLoS One; 2017 Aug 04; 12(3):e0174638. PubMed ID: 28358836 [Abstract] [Full Text] [Related]
20. HELP: A computational framework for labelling and predicting human common and context-specific essential genes. Granata I, Maddalena L, Manzo M, Guarracino MR, Giordano M. PLoS Comput Biol; 2024 Sep 04; 20(9):e1012076. PubMed ID: 39331694 [Abstract] [Full Text] [Related] Page: [Next] [New Search]